
Mite

a basis for ubiquitous virtual machines

Reuben Rhys Thomas

St John’s College

A dissertation submitted for the Ph.D. degree

November 2000

Ars est celare artem

To Basil Rose, who did it first, and Tony Thomas, who hooked me.

Preface

Mite is a virtual machine intended to provide fast language and machine-neutral just-
in-time translation of binary-portable object code into high quality native code, with a
formal foundation.

Chapter 1 discusses the need for fast high-quality run-time translation of portable
code, considers what functionality is needed, and sets out a list of goals that Mite should
reach. The chapter ends by stating the contribution of the thesis. Chapter 2 discusses
related work, concentrating on the extent to which the various systems examined fulfil
Mite’s goals. Chapter 3 elaborates Mite’s design, and chapter 4 analyses the choices that
it makes. Chapter 5 examines the implementation, which consists of a C compiler back
end targeting Mite and a virtual code translator for the ARM processor, and shows how
it could be extended to other languages and processors. Chapter 6 describes and anal-
yses a series of tests performed on the implementation, then assesses both the design
and implementation in their light. Chapter 7 describes future work; finally, chapter 8
concludes the thesis with an appraisal of how well Mite meets its goals, and a final
perspective.

Appendices A–C give Mite’s definition, appendix D lists two of the benchmark pro-
grams used in chapter 6, and appendix E gives the data collected from the tests.

This dissertation is my own work and includes nothing resulting from collaboration.
I owe many thanks. Alistair Turnbull’s keen insight, blunt criticism and imaginative

advice elaborated in many hours of enjoyable discussion have cheered and smoothed
my path; he also read and criticized the text. Simon Peyton Jones has been a smiling
source of balanced encouragement and criticism. Martin Richards supervised me with
a light hand, and lit the murk of bureaucracy. Rosamunde Almond, Julian Seward, Si-
mon Marlow and Eugenia Cheng pointed out errors logical and literary. Several kindly
souls gave other assistance; in particular, Dave Hanson and Chris Fraser helped me far
beyond the call of duty in my abuse of their LCC compiler, and Arthur Norman gave
useful advice on the shape a thesis should have.

i

ii

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Scope and goals . 2

1.2.1 Required functionality . 2
1.2.2 Goals . 3
1.2.3 Non-goals . 4

1.3 Contribution of this thesis . 4

2 Context 6

2.1 Java VM . 6
2.2 Dis . 7
2.3 VCODE . 8
2.4 ANDF . 9
2.5 C-- . 10
2.6 TAL and TALx86 . 11
2.7 Other systems . 11
2.8 Comparison . 16

3 Design 18

3.1 Architecture . 18
3.1.1 Quantities . 18

3.1.1.1 Offsets and sizes . 18
3.1.2 Memory . 19
3.1.3 Stack . 19
3.1.4 Flags . 20

3.2 Instruction set . 20
3.2.1 Creating and destroying stack items 20
3.2.2 Register assignment . 20
3.2.3 Data processing . 21

3.2.3.1 Simple arithmetic . 21
3.2.3.2 Division . 21
3.2.3.3 Logic and shifts . 22
3.2.3.4 Comparisons . 22

3.2.4 Addressing memory . 22
3.2.5 Branching . 23
3.2.6 Subroutines . 23

iii

Contents

3.2.7 Functions . 25
3.2.8 Non-local exit . 26
3.2.9 Escape . 28
3.2.10 Optimization directives . 28

3.3 Data . 28
3.4 Object format . 29
3.5 Pitfalls . 29

4 Rationale 31

4.1 Architecture . 31
4.1.1 Load-store three-operand register model 31
4.1.2 Memory . 33
4.1.3 Three-component numbers . 34

4.2 Registers . 35
4.2.1 Unlimited virtual registers . 35
4.2.2 Stack . 36
4.2.3 Numbering . 37
4.2.4 Sizes . 38
4.2.5 Constants . 39

4.3 Instruction set . 39
4.3.1 Registers . 40

4.3.1.1 Creation and destruction 40
4.3.1.2 Ranking . 41
4.3.1.3 REBIND . 42

4.3.2 Flags . 43
4.3.3 Function calling . 43
4.3.4 Division . 44
4.3.5 Escape . 44
4.3.6 Seeming superfluities . 45

4.3.6.1 CATCH and THROW . 45
4.3.6.2 SWAP . 48

4.4 Object format . 48
4.5 Semantics . 49
4.6 Shortcomings . 50
4.7 Summary . 51

5 Implementation 52

5.1 Mite’s components . 52
5.1.1 Assembler . 52
5.1.2 Translator . 54
5.1.3 Compiler back end . 54
5.1.4 Run-time system . 54
5.1.5 Standard library access . 55

5.2 A sample translation . 55

iv

Contents

5.2.1 C program . 55
5.2.2 Translation to Mite virtual code . 56
5.2.3 Translation to ARM assembly . 59

5.2.3.1 Idiosyncratic code . 61
5.2.3.2 Physical register usage 62
5.2.3.3 Immediate constants . 63
5.2.3.4 Address constants . 63
5.2.3.5 Register allocation and spilling 63

5.2.4 Summary . 65
5.3 Optimizing compilation . 65

5.3.1 Test program . 65
5.3.2 LCC-style optimization . 66
5.3.3 GNU C-style optimization . 67

5.3.3.1 Hits . 67
5.3.3.2 Misses . 69

5.4 Other languages . 70
5.4.1 Static chains . 70

5.4.1.1 Putting variables in a chunk 72
5.4.1.2 Walking the stack . 72

5.4.2 Exceptions . 72
5.4.2.1 C style exceptions . 73
5.4.2.2 Java style exceptions . 74
5.4.2.3 ML style exceptions . 75

5.4.3 Garbage collection . 75
5.4.3.1 Reference counting . 75
5.4.3.2 Conservative . 76
5.4.3.3 Accurate tracing . 76

5.5 Other target processors . 77
5.5.1 Flags without a dedicated register 77
5.5.2 Targeting the IA-32 . 77

5.5.2.1 Register allocation . 78
5.5.2.2 Three-operand instructions 79

5.6 Summary . 79

6 Assessment 80

6.1 Tests . 80
6.1.1 Measurements . 81
6.1.2 Execution speed . 81
6.1.3 Code size . 84
6.1.4 Executable size . 87
6.1.5 Translation speed . 87
6.1.6 Memory consumption . 89
6.1.7 Usage of physical registers . 90

6.2 Evaluation of the implementation . 91

v

Contents

6.2.1 Assembler . 91
6.2.2 LCC back end . 92
6.2.3 Translator . 93

6.2.3.1 Speed and memory consumption 93
6.2.3.2 Quality of the generated code 94

6.3 Evaluation of the design . 96
6.3.1 Implementability . 96
6.3.2 Importance of innovative features 97
6.3.3 Design compromises . 98

6.4 Summary . 100

7 Future work 101

7.1 Improvements . 101
7.1.1 Registers . 101

7.1.1.1 Out of order KILL . 101
7.1.1.2 Typing . 101
7.1.1.3 Targeting . 102
7.1.1.4 Addressing chunks directly 103

7.1.2 Walking the stack . 103
7.1.3 Flags . 104
7.1.4 Code sharing . 105
7.1.5 Tail call . 105
7.1.6 Translator . 106
7.1.7 Consistent semantics . 106

7.2 Extensions . 107
7.2.1 Floating point . 107
7.2.2 Instruction scheduling . 108
7.2.3 Global optimization . 108
7.2.4 Compiler back end . 108
7.2.5 Dynamic code generation . 108
7.2.6 Sandbox execution . 109

8 Conclusion 110

8.1 Appraisal . 110
8.2 Perspective . 111

A Semantics 113

A.1 Introduction . 113
A.2 Definitions . 113
A.3 State . 114
A.4 Program . 114
A.5 Instructions . 115

A.5.1 Assignment . 115
A.5.2 Data processing . 115

vi

Contents

A.5.2.1 Arithmetic . 116
A.5.2.2 Logic . 116

A.5.3 Memory . 117
A.5.4 Branch . 117
A.5.5 Call and return . 118
A.5.6 Catch and throw . 119
A.5.7 Stack . 119

B Assembly language 120

B.1 Introduction . 120
B.2 Metagrammar . 120
B.3 Identifier . 121
B.4 Number . 121
B.5 Item . 121
B.6 Label . 122
B.7 Manifest . 122
B.8 Instruction . 122

B.8.1 Assignment . 122
B.8.2 Data processing . 123

B.8.2.1 Arithmetic . 123
B.8.2.2 Logical . 123

B.8.3 Memory . 123
B.8.4 Branch . 124
B.8.5 Call and return . 124
B.8.6 Catch and throw . 125
B.8.7 Stack . 125
B.8.8 Escape . 125
B.8.9 Datum . 126

B.9 Location . 126
B.9.1 Labelling . 126
B.9.2 Code . 126
B.9.3 Handler . 126
B.9.4 Subroutine and function . 127
B.9.5 Data . 127

B.10 Directive . 127
B.11 Module . 127
B.12 Comments . 127

C Object format 128

C.1 Introduction . 128
C.2 Presentation . 128
C.3 Number . 129

C.3.1 Width . 129
C.4 Identifier . 129

vii

Contents

C.5 Item . 129
C.6 Address . 129
C.7 Manifest . 130
C.8 Lists . 130
C.9 Instruction . 130

C.9.1 MOV and DEF . 131
C.9.2 Data processing . 131

C.9.2.1 Three-operand . 131
C.9.2.2 Four-operand . 131

C.9.3 Memory . 132
C.9.4 Branch . 132
C.9.5 Call and return . 132
C.9.6 SYNC . 133
C.9.7 NEW . 133
C.9.8 Datum . 133

C.9.8.1 Literal . 133
C.9.8.2 Space . 133

C.9.9 Other instructions . 134
C.10 Location . 134
C.11 Data . 135
C.12 Module . 135

D Source code of tests 136

D.1 The fast-Fourier transform test (fft) . 136
D.2 Pyramid register allocation test (pyram) 138

E Results of the tests 139

Bibliography 144

Colophon 154

viii

1 Introduction

This thesis describes Mite, a general-purpose low-level virtual machine (VM) with a
semi-formal definition (see appendices A and B) and binary-portable code format (see
appendix C). It is a good target for compiled languages, and allows compilers to per-
form many optimizations on the virtual code, so that its just-in-time (JIT) translator can
be simple and fast, while still producing good native code.

The rest of this chapter motivates the design of Mite, sets out a list of goals that it
should reach, and states the contribution of the thesis. Chapter 2 discusses related work.
Chapter 3 elaborates Mite’s design, and chapter 4 analyses the choices that it makes.
Chapter 5 starts by outlining the structure of the implementation, which consists of a
C compiler back end targeting Mite, and a virtual code translator for the ARM proces-
sor. A sample translation is followed from C to Mite code, and then to ARM assembler,
and optimizing compilation is discussed. The chapter ends by introducing methods for
dealing with other languages and processors. Chapter 6 describes and analyses a series
of tests performed on the implementation, then assesses both the design and imple-
mentation in their light. Chapter 7 suggests future work; finally, chapter 8 concludes
the thesis with an appraisal of how well Mite meets its goals, and ends with a final
perspective. Appendices A–C give Mite’s definition, appendix D lists two of the bench-
mark programs used in chapter 6, and appendix E gives the data collected from the
tests.

1.1 Motivation

Computers are becoming increasingly diverse in form and function, and ever more
connected, above all via the internet. At the same time, the tasks we use them for are
becoming more distributed: we can send and receive email from our television and
mobile phone as well as our PC, and keep our diary and address book synchronized
between our desktop, laptop and PDA. This environment encourages the creation of
software which is not only portable but mobile: sending code across the network gives
much more flexibility and power than communicating only data.

Of course, many tools and languages for creating portable and mobile code already
exist. Unfortunately, they rarely consist of reusable components. Code generators tend
to be tied to a single compiler, which often means a single language; compilers usually
produce code that runs only on one machine; VMs are often integrated with a particular
language or run-time environment (or both). Moreover, tradeoffs such as those between
portability and loading time, or speed of JIT translation and speed of execution, or com-
pilation time and memory usage, tend either to be beyond the programmer’s control,

1

1 Introduction

as in VM systems such as Java [43] or Inferno [26], or require a lot of work to alter, as in
a compiler system such as GNU C [35].

It would be vainglory in the spirit of UNCOL [116] to attempt to design a single sys-
tem that solves all these problems; not even Java claims to be that. The current diversity
is a testament to the need for a range of solutions. At the same time, the increasing com-
plexity of software systems underlines the necessity of an approach to programming
that is at the same time more modular (building components rather than monoliths)
and higher-level (programming with components rather than lines of code) than a sin-
gle system can easily provide. What is really needed is a common basis from which to
attack the problems outlined above.

Hence, it would be nice to have a system that provided:

A single target for code generation

Portable binaries and hence, potentially, mobile code

Support for a wide range of compiled languages

Fine control over the tradeoffs involved in compilation

An open and extensible basis for more complex systems

This is what Mite attempts to do.

1.2 Scope and goals

In the light of the desiderata listed above, the functionality required of Mite is outlined
below. This leads to a list of goals that the system should meet in order to provide such
functionality; afterwards, some non-goals are disposed of.

1.2.1 Required functionality

Given the list above of benefits that Mite would like to provide, what features must
it have? To act as a single target for code generation, Mite must provide a machine-
independent model of computation. Together with the requirements that it support
most compiled languages and give a high degree of control over compilation tradeoffs,
this seems to indicate a low-level execution model. To allow portable code, a standard
binary format must be provided. To form an open basis for building more complex
systems, it should be possible to interwork with native code. If Mite is to be trusted,
its definition should be as precise as possible, preferably formal. Finally, if Mite is to
give fine control over the code generation process and act as a basis for more complex
systems, then it must be just as flexible as the underlying machines; it should not pre-
clude alternative implementations of features not directly implemented by the proces-
sors themselves, such as memory management and concurrency. This, taken together
with the indication of a low-level execution model, suggests that Mite should be little
more than a processor abstraction.

2

1.2 Scope and goals

1.2.2 Goals

The features that Mite must provide are now listed; for each, references to the points at
which it is introduced and discussed are given.

A low-level processor-based VM model (chapter 3 and section 4.1) The VM model
should be little more than a processor abstraction, and have a similar instruction
set and execution model to those of conventional processors.

Architecture neutrality (sections 4.1, 5.3 and 5.5) Most of Mite’s features should be
common to all processors; for example, most instructions should map directly
to native instructions. At the same time, the translator should be able to take
advantage of processor features that are not modelled.

Language neutrality (sections 4.1 and 5.4) Mite should constrain a compiler no more
than the underlying machine, so that language compilation techniques used by
native code generators are applicable to Mite, and languages that are compiled
directly to native code can be similarly compiled for Mite.

Portable virtual code (sections 4.1.2, 4.1.3 and 4.2) It should be possible (though not
mandatory) to compile virtual code that can run unaltered on any target system.

Fast JIT translation (sections 4.1, 5.2.2 and 6.1.5 The virtual code should be translat-
able in a single pass, and most of Mite’s instructions should map directly to ma-
chine instructions.

High-quality native code (sections 4.1, 5.3 and 6.1.2) With the combination of opti-
mizable virtual code and annotations, Mite should be capable of generating
excellent native code. More importantly, the responsibility for code quality
should lie squarely on the compiler; generating good code should not slow the
JIT translator down. To make significant further improvements should require
the translator to make detailed machine-specific analysis.

Virtual code annotation (sections 3.2.10, 6.1.2 and 6.1.3) It should be possible for
compilers to help the JIT translator with machine-dependent aspects of code
generation (which they cannot perform themselves), such as register allocation,
by annotating the virtual code.

Interworking with native code (sections 3.2.7 and 5.1.5) Mite should reside in the
same address space or spaces as native code on the host system, and be able to
call and be called like normally compiled code. This will allow it to integrate with
native libraries and object modules without glue code.

Portable object format (appendix C, and sections 3.4 and 4.4) A simple binary-
portable object file format should be provided that is endianness-independent
and quick to read, write, and traverse.

3

1 Introduction

Precise definition (appendices A and B, and section 4.5) Mite’s definition should be
given in formal terms, so that implementors can be sure of its meaning, and al-
lowing proofs about Mite programs to be made and automatically checked.

Section 8.1 discusses how well Mite meets these goals.

1.2.3 Non-goals

Mite does not aim to provide:

Write once, run anywhere This requires portable libraries as well as portable code, and
leads towards a closed system. On the other hand, it would certainly be possible
to develop a set of libraries that can be widely implemented and used by binary-
portable programs, and use them with Mite to make such a system.

High-level mechanisms Mechanisms such as security, concurrency, exceptions and
garbage collection should be implemented orthogonally to the main execution
model as far as possible. [93] and [103] show how exceptions and accurate
garbage collection can be added to a code generation system with only minor
modifications to the core design, and section 5.4.3 considers how to support
garbage collection in Mite.

The last word in execution speed This is unrealistic given an architecture-neutral VM
model and a fast translator (although performance can still be near-optimal: see
section 6.1.2). In any case, run-time optimization of the native code can probably
produce better results than any static optimizations [66].

1.3 Contribution of this thesis

Mite makes the following contribution:

Novel mechanisms for portable just-in-time optimization It provides novel mecha-
nisms for compilers to indicate optimizations in a machine-independent way
that can be used rapidly by a just-in-time translator to produce good native code:
the ranked register stack (section 4.2.2) and constant registers (section 4.2.5). In
particular, register ranking can be used to encode any register allocation algo-
rithm, with some constraints, so that it can be performed in linear time by the
just-in-time translator (section 4.3.1.2).

Compiler can ensure good native code Mite’s design allows a good compiler to en-
sure that good native code is produced, even by a simple JIT translator. Rather
than the usual tradeoff between the time taken to perform the JIT translation and
the speed of the resultant native code, Mite ensures that there is little a translator
has to do to turn good virtual code into good native code. A simpler compiler’s
output can be improved by a language and machine-independent virtual code
optimizer.

4

1.3 Contribution of this thesis

Flexible non-local return mechanism Mite provides a simple non-local return mecha-
nism (section 4.3.6.1) that can be used to implement a wide range of control flow
mechanisms such as exceptions and continuations, while remaining compatible
with the system calling convention. The only system to offer a similar mechanism
is C-- [103], and though more flexible, its is also much more complex than Mite’s.

Low-overhead 32/64-bit portability Three-component numbers (section 4.1.3) allow
compilers to generate code that runs on both 32 and 64-bit machines, without
having to defer calculations based on the word size to run time, or forcing the
compiler to use a complex algebra to make such calculations at compile time.

Unique combination of features Mite uniquely occupies a point in the design space of
VM-based systems. No other system offers a small, stand-alone, language-neutral
VM capable of producing optimized native code. Useful in its own right as a com-
piler target and back end, Mite would make a good starting point for a wide range
of VM-based applications, including dynamic code generation, portable execu-
tion environments along the lines of Java, and distributed operating systems. Its
definition (appendices A and B) could be used as the basis for theoretical investi-
gations of code generation issues. In addition, Mite is fully documented, and its
JIT translator is free software (see http://rrt.sc3d.org/).

5

2 Context

A major reason for designing Mite was that no system known to me met all the require-
ments identified in section 1.2.1. However, a variety of systems share some of them, and
meet others to varying degrees. Several are examined below. Each system’s key features
are described with the reasons for their introduction and the advantages and disadvan-
tages that they entail. Direct comparisons with Mite are postponed to chapter 4, after
Mite’s design has been elaborated.

2.1 Java VM

Java is the most high-profile VM-based system currently in use. It shares with Mite the
goal of providing an architecture-neutral platform for the execution of binary-portable
object code, but otherwise the two are dissimilar. The Java VM [67] (JVM) is much more
than a hardware abstraction layer, and is tightly coupled to the Java system [43], with
direct support for language and system-specific features such as objects, monitors and
byte-code verification.

Before discussing specific features of Java, it is worth noting one guiding principle,
that of familiarity. Although Java as a whole was a novelty when it was introduced, it
was built from tried-and-tested components: from the VM model to concurrency, the
language to the I/O model, it used familiar, well understood and thoroughly tested
concepts. Thus, it is hardly surprising that some of its design choices have obvious
disadvantages.

The JVM is a stack-based architecture, with a zero-operand byte-coded instruction
set. The project that produced Java was originally aimed at embedded devices, where
low memory consumption was crucial, and the lack of processing power favoured an
interpreter-based system. The byte-coded stack machine is a classic implementation
technique, exemplified by the p-code system [85], and gives good code density and
performance on smaller machines, especially 8-bit microprocessors. However, general-
purpose interpreters of this sort tend to be an order of magnitude slower than opti-
mized native code for compute-bound tasks [24].1 Hence, JIT translators are generally
used to execute Java. To produce good native code, register allocation must be per-
formed for stack locations, and this is almost as much work as compiling Java source
to native code; thus, JIT translators cannot easily be fast and produce fast code. Also,

1In more specialized systems the reverse can be the case. For example, APL interpreters spend most
of their time executing the opcodes [4], so the overhead of instruction fetch and decode is negligible. In
addition, since the VM instructions are heavily tuned for the language, and are implemented in carefully
hand-crafted code, programs generally run faster than if they were compiled conventionally into native
code.

6

2.2 Dis

though the byte-code is fairly compact, as zero-operand code tends to be, Java class files
are usually bulky compared with equivalent C or C++ executables, because of all the
type information they contain.

The JVM has direct support for Java language types, both primitive integral, floating
point and character types, and object types. This is primarily to ensure safe execution of
Java programs: while they can have run-time errors, including type errors, they cannot,
in theory, gain unauthorized access to the host system. The JVM’s type system allows
many of the necessary checks to be performed at load time by the byte code verifier,
which increases execution speed. The main disadvantage is that the object types are tied
closely to the Java language, and even the primitive types are not general; for example,
there are no unsigned integral types. This makes it hard to compile languages other
than Java for the JVM: untyped and weakly typed languages must either adapt to it
or simulate memory access, and strongly typed languages must contrive a mapping to
Java types. Nevertheless, Forth [14, 110] and ML [118] compilers exist for the JVM.

Other aspects of the JVM’s language support, such as monitors and the class file
format, have similar tradeoffs: they improve efficiency and safety for running Java pro-
grams, but are at best tricky and at worst a hindrance when implementing other lan-
guages with different semantics for the same constructs.

2.2 Dis

As the JVM is to Java, so Dis [141] is to Inferno [26]. While the JVM is heavily specialized
for the Java language, Dis is much more language-neutral, as Inferno supports several
languages. Dis is however tied to Inferno.

Dis has a three-operand memory-to-memory instruction set. This was designed to
allow a range of compilation techniques, from naïve to flow-analysis-based register
allocation, while retaining a simple JIT translator; Dis instructions map more directly to
machine instructions than JVM instructions. Pike [97] asserts that “a load-store model
requires . . . register allocation in the compiler. Memory-to-memory doesn’t, but with
careful design doesn’t preclude effective native register allocation.” While this is true,
mapping memory locations to registers is hampered by aliasing (see section 4.1.1). In
addition, this statement suggests an interesting intention: to reduce the effort needed by
the compiler (for register allocation) and instead to make the JIT translator do the work.
From Mite’s perspective, this is bizarre: the compiler has the time and information to
perform good register allocation which the translator lacks. On the other hand, perhaps
the designers of Inferno did not think that compilers could perform effective register
allocation for virtual code; in this case, the service might as well be centralized in the
JIT translator.

The memory-to-memory architecture also makes for faster interpretation, because
fewer VM instructions are required, so the fetch-decode overhead of the interpreter is
reduced. For example, to implement the assignment a := x + y may take two pushes,
an add, and a pop on a stack machine, whereas it is a single Dis instruction.2

2This example, taken from [141], is a little unfair: a VM whose stack items can be permuted avoids many

7

2 Context

Dis has a binary-portable object module format, which is structured into code, data,
symbol, and type information. As well as allowing portability, the module design is
aimed at aiding system security and run-time memory management. Because Dis has
reference-counting garbage collection built in, the VM run-time system has to know
the structure of every type used, so that pointers can be tracked. Security features in-
clude support for the cryptographic signature of type information. The result is that the
module format, though much simpler than Java’s, is still more than a plain object file
format. Not only is it specific to Inferno, but the type information uses the type struc-
ture of Limbo, Inferno’s main language. Limbo’s type system is amenable to use for
other languages, as it contains records and pointers, unlike Java’s object-oriented type
system; nonetheless there are one or two awkwardnesses, such as the lack of 16-bit
integral types.

There are other examples of both OS support, such as threading primitives, and lan-
guage support, such as instructions for managing lists and arrays. However, while it
is hard to see how the OS support could be used with systems other than Inferno, the
language support could easily be used with other languages. While Limbo is definitely
favoured by Dis, other languages are not excluded.

In conclusion, Dis is closer to Mite’s ideals than Java in most respects, but is still
rather higher level.

2.3 VCODE

VCODE [29] is a dynamic code generation system that provides a machine-independent
one-pass code generation interface. It is lightweight, typically executing fewer than 10
instructions per machine instruction generated.

VCODE uses a procedural interface that presents an idealized RISC-like machine.
There is a code generation function for each sort of instruction that can be generated,
plus functions to deal with register allocation and general housekeeping. This makes
dynamic code generation convenient, as the client can call the code generation routines
directly, and fast, as no intermediate data structure need be built or consumed. On the
other hand, because the virtual code has no representation, it must be generated by the
program that wants to use it, and cannot be stored or transmitted. It is also harder to
specify the semantics of an application programming interface (API) than of a language
or VM, although since VCODE has little global state, the code generation functions are
largely independent. Since VCODE is implemented as a set of C macros, it is tricky to
use with languages other than C.

VCODE’s machine model is very low level. This allows it to offer direct access to ma-
chine registers and machine-independent delay slot instruction scheduling, and con-
tributes to VCODE’s rapid code generation. On the down side, it complicates code gen-
eration: rather than providing an infinite number of virtual registers, VCODE provides

pushes and pops by keeping frequently-used quantities on top of the stack, where they can be accessed
directly; also, many stack machines’ instructions implicitly pop their parameters and push their results.

8

2.4 ANDF

calls to claim and release registers, and the client must deal with spilling when nec-
essary. Also, the machine model is so close to that of processors that some awkward-
nesses are exposed. For example, constants may either be loaded into virtual registers or
placed in immediate operands. This is a natural choice to offer on a particular processor,
but it is less sensible for a machine-independent system where the range of immediate
constants is unknown (see section 4.2.5).

VCODE has little system or language support other than a way of calling C functions;
this makes it extremely flexible. While it is obvious that to build a system such as In-
ferno or Java on top of VCODE would require many features to be added, this is only
a disadvantage of VCODE insofar as the current design makes their addition difficult.
In fact, VCODE is designed to be extensible, and adding new instructions, at least, is
straightforward.

An automatic back end generator makes porting VCODE easy: back ends are gener-
ated from patterns that match virtual instructions to native instructions. Though it has
several RISC implementations, VCODE has notably not been implemented on the Intel
IA-32 architecture, which raises questions as to the universality of its machine model
(but see the description of PASM in section 2.7).

An extension to VCODE has been written, called ICODE [99], which provides an infi-
nite number of registers, and performs global optimization on an intermediate repre-
sentation of the code. This seems to confirm VCODE’s suitability as a basis for more am-
bitious systems, while allowing it to remain more flexible than a monolithic approach
such as the JVM. However, to be useful for more than run-time code generation, VCODE

needs a portable binary form. This involves more than just designing a virtual object
format: at the moment, because VCODE exposes the host’s register set, virtual code is
not portable.

2.4 ANDF

ANDF [87] (Architecture-Neutral Distribution Format) is the multi-language binary-
portable object encoding adopted by The Open Group.

ANDF is a distribution format rather than an execution format; programs are in-
tended to be compiled once on each machine or network by an “installer”; thereafter,
the compiled binary is used. To this end, ANDF models language features rather than
machine features, and encodes program in a high-level tree structure that resembles an
abstract syntax tree. This means that the installer can be rather like a compiler, and can
perform all the usual optimizations. Performance is about the same as that of code gen-
erated by conventional optimizing compilers [89]. The tree encoding is extensible, and
since many optimizations can be performed on it directly, about 70% of the installer
code is machine-independent.

By giving freedom for installers to optimize it, the high level encoding is not so good
for JIT translation, and dynamic code generation would be slow. In order to be able
to use standard system libraries, it contains language-specific constructs, and therefore
needs to be extended for each new source language. Also, the installers are rather more

9

2 Context

complex than most JIT translators, and maintaining them for a wide range of platforms
is expensive [89]. The problem is exacerbated by the languages that ANDF supports, C,
C++, FORTRAN, and Ada, most of which are not designed for binary portability. For
example, the C installer requires special platform-neutral header files, which are then
mapped to the target platform’s headers; sometimes, further work is required to use
native headers with ANDF. Supporting a wide range of targets thus requires much the
same effort as supporting a multiple-language native code compiler. Some burden is
also placed on the application writer: C applications must define application-specific
APIs rather than using conditional compilation for different targets. This does however
have the advantage of providing semantic checks that C normally omits.

In summary, ANDF is specialized both with respect to the languages it supports,
and in the functions it performs. It is interesting to note that although ANDF is well
documented and freely available for many systems, it is not widely used.

2.5 C--

C-- [91] is a portable assembly language based on C, which aims to be a good target for
compilers, particularly of garbage-collected languages.

C-- is a language rather than a VM or a code generation API. This has allowed it
to be defined in a familiar manner, and makes it naturally extensible; extensions have
been designed for exception handling [103] and accurate garbage collection [93], both
of which require intimate interaction between the C-- and high-level language’s run-
time systems. C-- is also more human-readable than the other formats described in this
chapter. Its C-like design makes it straightforward to compile with existing compiler
technology, and to achieve the same or better code quality (C-- has special support for
constructs such as tail-calls which other languages tend to lack). Being a fully-fledged
language, not just an assembler, C-- is rather more expensive to translate than a low-
level VM assembly language, and correspondingly harder to implement, as a full front
and back end are required.

As it is a language, code generators need not be written in a language that can call
the C-- implementation directly. This makes it more accessible than competitors such as
ML RISC [42] or GNU C’s RTL [35], which provide an API instead, which in GNU C’s
case is not separable from the rest of the compiler. Most of the systems discussed in this
chapter have a similar property, though with binary rather than textual formats.

C-- uses entirely concrete types: its variables, which are mapped to registers and
memory locations, are of fixed size. This means that offsets and space requirements are
simple to calculate, but does mean that though code generators that emit C-- can be
highly portable, C-- programs themselves are not.

C, C++ and Microsoft COM object calling conventions are all supported by C--,
which makes it highly interoperable.

C-- seems a promising approach for those used to the horrors of writing code gen-
erators that emit C, but it is not clear whether it will succeed. The alternative approach
of adding a few judiciously chosen structures to a C compiler, and perhaps using a

10

2.6 TAL and TALx86

C preprocessor to ensure that undesirable features of C are not used in C-- programs
might have yielded a solution that was easier to implement. Most worryingly, unlike
the other systems described in this chapter, C-- is still largely vapourware: an imple-
mentation has been in progress for some time, but is still not usable.

2.6 TAL and TALx86

TAL [83] is a typed assembly language, a small RISC-like assembly language annotated
with static type information that makes it possible to prove statically that TAL programs
are type-safe. An implementation for Intel IA-32 processors exists, called TALx86 [82],
along with compilers for C and Scheme-like languages. TAL does not aim to provide
portable code generation in any sense: the TALx86 compilers generate ordinary IA-32
code. However, TAL’s theory is certainly architecture-neutral, and its implications for
portable code generation merit its place in this chapter. As will be seen below, TAL can
also be considered as a useful adjunct to portable code generation.

TAL was designed to provide a flexible route to safe and certified code. TALx86, which
is just a subset of IA-32 assembly language, is trivially language-neutral, and can be
optimised conventionally, subject to the constraints placed upon it by the requirements
of type safety (TAL’s theoretical framework is largely type-based). TAL’s type checker
is fast, and typically invoked by the compiler on its assembler output, which contains
type annotations as comments, before the code is passed to the assembler.

Hence, TALx86 can be used at a very low level: for example, it can be used to verify
the output of a JIT translator, which therefore need not itself be trusted. This gives
better safety than the JVM, which verifies its byte-code input, but might not translate
it correctly into native code. TALx86’s type system includes support for type-checking
of stack frames, and allows object modules to be type-checked with respect to each
other; inter-module references can then be checked at link time. This allows it to be
used straightforwardly with conventional separate compilation.

In its present state, TAL is limited in scope: it does not support partial safety in lan-
guages that are not type-safe, and has important features missing, such as floating point
arithmetic. In addition, certain classes of optimization, mainly high-level code transfor-
mations, are forbidden. Most importantly, it does not support portable code, though it
could be used in conjunction with a JIT translator to guarantee the type safety of JIT
translation. Nevertheless, since TAL’s machine model is similar to Mite’s, it ought to be
possible to define a portable system formally. If the type checks were more flexible, the
system designer would also have better control over the compromises between safety,
complexity, and speed of verification.

2.7 Other systems

Several other systems are also used as points of comparison with Mite in the rest of
the thesis. Since they overlap in aims and functionality with systems described above,
it would be battological to describe them in detail; instead, their principal features are

11

2 Context

sketched, and their interesting points of difference from the systems already discussed
are highlighted.

Microsoft .NET VM [77] is similar in scope to the JVM, but aims for broader applica-
bility, in two ways. First, its instruction set is much more language neutral, as it
aims to support a wide range of languages. Secondly, its security is more flexible:
it allows code either to be verified, in a similar manner to JVM code, or merely
validated, which means that it is simply structurally correct, but may not be type-
safe. This makes it easier for languages such as C and C++ to target it.

PRACTICAL [28] is a VM that was designed for embedded systems in financial net-
works. It is designed to be run on small microprocessors, and hence uses threaded
code to improve code density; the interpretive overhead of this technique is much
less than on more powerful microprocessors. It is not language neutral, but sup-
ports C and Forth. Because it is designed for high security networks, it has a very
simple and concrete execution model, though it is not formally specified.

Cintcode [57] is a VM designed to execute BCPL, for which it is highly specialized. It
has a simple, concrete design, and runs successfully on a wide range of machines,
from 8-bit microprocessors to 64-bit workstations. Its emphasis is on simplicity
and ease of porting. It has a portable C interpreter, as well as a collection of hand-
written assembly language interpreters, each only a few kilobytes in size. The
BCPL compiler which runs on it is also simple, performing few optimisations;
nevertheless, it performs reasonably well, largely because of its high code den-
sity and the small interpreter, which fits in the instruction cache of most modern
processors.

Juice [37] is similar to Java, though much less well developed. Its language is
Oberon [142], and it aims to provide both smaller binaries and better native
code than the JVM. To do this, it uses a binary format similar to ANDF’s; the
tree-based code structure is both more compressible than a typical virtual code
and, since it is a higher-level representation of the program, contains more useful
information that the JIT translator can use to optimize the native code that it
produces.

PASM [21] is a dynamic code generation system very similar to VCODE, but less well
developed; there are no publications about it, and little documentation. It has two
notable features: it allows multiple functions to be created in parallel in a thread-
safe manner (VCODE allows only one), and it provides an infinite number of vir-
tual registers without the other overheads of ICODE. It has been implemented for
the Intel IA-32, which is about as different from its machine model as any worksta-
tion microprocessor: it is CISC rather than RISC, allows direct memory operands
in most instructions, and has few general-purpose registers. This suggests that
PASM’s machine model, and hence VCODE’s, is applicable to most real machines.

12

2.7 Other systems

lightning [16] is a dynamic code generation system inspired by VCODE. It aims to be
even faster at code generation, largely through having a simpler machine model,
in order to support languages such as Smalltalk that rely on frequent incremen-
tal recompilation. It is entirely written in C macros, so generates code extremely
quickly. Its VM model is brutally simple: it has just six fixed virtual registers, and
does not allow functions of more than six arguments.

There are many other systems that provide portable code generation in some form,
notably the many VMs in the run-time systems of languages such as Perl [134] and
Python [75]. These VMs are in wide use, but not as systems in their own right; they
occupy positions near the JVM in the design space. On a different tack, several com-
mercial systems claim to fulfil goals similar to those of Mite, including Elate [117], Om-
niware [2, 70] and ORIGIN [69]. Unfortunately, information about them seems to be
commercially restricted.

13

2 Context

Level of

abstraction

object

procedure

instruction

architecture-
specific

Language

neutrality
neutralwide range

multiple
language

single
language

TALx86

Cintcode

PASM, ICODE

Mite

VCODE

TAL

C--

Dis

JVM

PRACTICAL

Juice ANDF

(Size of disc indicates breadth of functionality)

Figure 2.1: Comparison of code generation systems

14

2.7
O

ther
system

s

JV
M

D
is

Ju
ic

e
PRA

CTIC
A

L

Cin
tc

ode
V

C
O

D
E

IC
O

D
E

PA
SM

A
N

D
F

C-
-

TA
L

TA
Lx

86
M

ite

Neutrality

{

Machine-neutral
Language-neutral

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

Closeness to
machine

{ Optimizations in virtual code
CPU-like VM model
Direct machine access

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

Binary
representation

{

Portable binary format
Intermediate representation

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Run-time
translation

{

Dynamic code generation
JIT translation

✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

Safety

{

Sandbox execution
Verifiable virtual code

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

Additional
functionality

{

Garbage collection
Threads

✓ ✓ ✓

✓ ✓ ✓ ✓

Table 2.1: Comparison of code generation systems

15

2 Context

2.8 Comparison

Figure 2.1 and table 2.1 give some at-a-glance comparisons between Mite and the sys-
tems described in this chapter. They necessarily gloss over some of the differences and
subtleties discussed above. For example, the JVM and Dis are identical according to
the table, and the wide range of VM models is reduced to whether or not each resem-
bles a real machine. In the figure, ANDF and PRACTICAL are shown as being equally
language-neutral, though their approaches to language neutrality differ substantially
and have quite different tradeoffs.

The figure gives an idea of the relationships between the various systems. It plots
level of abstraction on the vertical axis against language neutrality on the horizontal
axis. The size of each circle indicates the system’s breadth of functionality, which means
the level of support for non-computational activities such as multi-threading, garbage
collection and security. There seems to be a negative correlation between level of ab-
straction and the other two qualities.

The table gives an overview of the functionality of each system, according to thirteen
features divided into six categories. Some of the headings are worth elucidating:

Optimizations in virtual code Compilers can express optimizations in the virtual code,
whether high-level, as in ANDF, or low-level, as in VCODE.

Portable binary format A format for virtual binaries that can be used on any host plat-
form.

Intermediate representation A concrete intermediate representation, whether textual,
such as C--’s, or binary, such as the JVM’s, as opposed to an API such as VCODE’s.

Dynamic code generation Run-time code generation by an application, typically of
application-specific code.

JIT translation Load-time translation of virtual code into native code.

Sandbox execution The ability to execute virtual code safely, without its being able to
attack the host machine, according to some well-defined security policy.

Verifiable virtual code Virtual code whose safety can automatically be verified stati-
cally with reference to some security policy.

Most of the systems discussed in this chapter offer portable code generation. Three
sorts of portability are involved: that of the code generation interface, that of the gen-
erated code, and that of the system itself. Each system strikes a different balance, and
differs in its degree of specialization and in the leeway for tradeoff between compiler
and run-time translator.

Mite aims to be portable in all three senses: the code generation interface is a machine-
independent assembly language, the generated code is stored in a standard binary for-
mat, and the machine-dependent part of the system is small. Specialized systems such

16

2.8 Comparison

as the Java VM could be built on top of Mite, though machine-dependent features that
it lacks, such as concurrency, would obviously require extra work. Mite makes code
quality almost entirely the compiler’s responsibility, but simple compilers can easily
generate naïve code; higher-level VMs which generate native code directly do not offer
this tradeoff. It would also be possible to write a language-independent optimiser for
Mite virtual code.

More Mite-centric comparisons are made in chapter 4, but first the next chapter in-
troduces Mite’s design.

17

3 Design

Mite’s definition is given in appendices A to C. It consists of three layers: a semantic
definition, a concrete syntax, and an object module encoding. Each layer introduces ad-
ditional constraints; the concrete syntax also adds several features not present in the
semantic model of the VM, most of which relate to optimization. This chapter intro-
duces the design from a programmer’s point of view, giving example code to illustrate
Mite’s features.

In this chapter, hexadecimal numbers are written followed by “h”; for example, 100
decimal is 64h in hexadecimal.

3.1 Architecture

Mite has a load-store architecture. The main difference from conventional processors is
its treatment of memory and registers, which must be dealt with carefully in order to
cope with differences between machines: the number and size of physical registers, and
alignment restrictions on accessing memory.

3.1.1 Quantities

The basic types with which Mite deals are strings of bits, called quantities. The length
of the string is the quantity’s width. A denotes the width of an address, and may be
either 32 or 64. Quantities may be one, two, four or A/8 bytes wide. An address-wide
quantity is called a word. The constant ashift has the value log2 A/8 (the number of
bit positions that a quantity must be left-shifted to multiply it by A/8), and a denotes
A/8 wherever a width is required.

3.1.1.1 Offsets and sizes

Since words may be 32 or 64 bits wide, and words must always be stored at word-
aligned addresses (see section 3.1.2), data structures may be laid out in different ways
on different machines. For example, a record consisting of two addresses separated by
a four-byte integer would require 12 bytes of storage if A is 32, and 24 if A is 64, as
shown in figure 3.1. In the latter case the integer has to be padded to the next eight-byte
boundary so that the second address is correctly aligned.

In order to describe the sizes of such structures, and offsets within them, Mite has
three-component numbers. A three-component number is written as b@w@r, which has
the value b + Aw/8 + 4 ⌊A/64⌋ r. The second and third components may be omitted if
they are zero. b is a number of bytes, and w a number of words. r deals with the fact that

18

3.1 Architecture

4

address 1

4

integer

4

address 2

(a) 32-bit machine; no padding needed

8

address 1

4

integer

4

padding

8

address 2

(b) 64-bit machine; padding required

Figure 3.1: Layout of a record at different word widths

words may need to be aligned to 4 or 8-byte boundaries. It gives the number of words
in the structure being described that would be on 4-byte boundaries if no padding,
or “roundings up”, were inserted. In the example above, r is 1. The value of the third
component is 0 on 32-bit machines, and 4r on 64-bit machines.

The size of the record described above is 4@2@1, made up of 4 bytes for the integer,
2 words for the addresses, and 1 rounding up from the integer to the second address.
The offset to the second address (third field) is 4@1@1. If the integer were stored at the
end, the size would be only 4@2@0, and take only 20 bytes on a 64-bit machine.

3.1.2 Memory

The memory is a word-indexed array of bytes; an index into the memory is called an
address. The memory is effectively the data address space; not all addresses are neces-
sarily valid. The stack (see the next section) is held in memory; code may also reside in
memory, but it need not, and the effects of manipulating it if it does are undefined.

Memory may be accessed at any width; the address must be aligned to the given
width. The effects of overlapping accesses at different widths are undefined; for exam-
ple, if the two-byte quantity ABCDh is stored at address 14, and the single byte at 15 is
then examined, its value may be either ABh or CDh.

3.1.3 Stack

Mite uses a stack for data processing, which resides in memory. There are two types of
stack item: registers, which are the same size as a machine address, and chunks, which
can be any size. A register’s value can be manipulated directly, and may be cached in
physical registers; chunks reside permanently on the system stack, and can only have
their address taken. Stack items are created on top of the stack, and only the top-most
item may be destroyed. The items are referred to by their position in the stack, one
being the bottom-most. All stack items occupy a whole number of words.

The current configuration of stack items is called the stack’s state; the state is statically
determined at each point in the program (see section 3.2.1).

Each register has a different rank between one and the number of registers. This
is used for register allocation: typically, if the host machine has N physical registers,

19

3 Design

the virtual registers with ranks 1 to N will be assigned to physical registers. When a
register’s rank changes, it may be spilled from or loaded into a physical register.

Chunks are used for three main purposes: stack-allocated scratch space, passing
structures by value to functions and subroutines, and for callee-saved information
within subroutines and functions (the “return chunk”). Sections 3.2.6 and 3.2.7 explain
the uses of chunks in functions.

3.1.4 Flags

There are four flags: zero (fZ), negative (fN), carry (fC), and overflow (fV). They are set
by each data processing instruction (see section 3.2.3). The flags may only be tested by
conditional branches, and must be tested immediately after they are set; see section 3.2.5
for examples.

3.2 Instruction set

The instruction set is RISC-like, and generally three-operand.

3.2.1 Creating and destroying stack items

A register is created by the instruction NEW . A newly created register is given rank

1. A chunk is created by NEW_n , where n is the size of the chunk, given as a three-
component number, as in section 3.1.1.1. Since all stack items occupy a whole number
of words, a chunk created with NEW_3@0@0 will occupy either 4 or 8 bytes, depending

on the value of A. KILL destroys the top-most stack item.

3.2.2 Register assignment

The instruction MOV r,v assigns v to register r. v can be either a register or an imme-
diate constant. An immediate constant is either a three-component number or a label,
optionally with a three-component offset added to it.

Registers can be either constant or variable. A constant register may only have its
value changed by a later DEF or MOV, while variable registers may be updated by ordi-
nary instructions such as ADD, MUL, and so on.

The instruction DEF r,v makes r a constant register with value v; UNDEF r makes r a
variable. Using MOV has the same effect as UNDEF, and makes the register variable from
then on.
DEF and UNDEF are static declarations, and apply from the point in the program at

which they occur to the next MOV or DEF acting on the same register. MOV is an ordinary
dynamic instruction, and loads the register with the specified value only when it is ex-
ecuted (though it makes the register variable statically, just like UNDEF). Sections 3.2.5
and 3.5 contain examples illustrating the difference between constant and variable reg-
isters.

20

3.2 Instruction set

3.2.3 Data processing

Most data processing instructions take two operands and one result. Destination regis-
ters are given before operand registers. All operations are performed to word precision.
Every data processing instruction except MUL and DIV sets fZ if its result is zero and fN

if the most significant bit of the result is one.

3.2.3.1 Simple arithmetic

For addition (ADD), subtraction (SUB) and multiplication (MUL), each instruction takes
one destination and two operands. The result of MUL is the least-significant word of the
product of its operands.

As an example, the following code computes the discriminant of a quadratic equation
ax2 + bx + c = 0 where a is in register 1, b in register 2 and c in register 3:

MUL 2, 2, 2 Compute b2 in register 2
MUL 1, 1, 3 Compute ac in register 1
KILL c (register 3) is no longer needed
NEW Create a register to hold the constant 4
DEF 3, #4 Define register 3 to be constant with value 4
MUL 1, 1, 3 Compute 4ac into register 1
KILL 4 (in register 3) is no longer needed
SUB 1, 2, 1 Compute b2 − 4ac into register 1
KILL b2 (register 2) is no longer needed

The result of the calculation is placed in register 1. Note how the top-most stack item
is killed as soon as it is finished with, possibly freeing a physical register or stack slot.
Declaring the register created to hold 4 as constant enables the translator to treat it as
an immediate quantity, and it may never need to be loaded into a physical register.

The NEG instruction takes a single operand, which it negates and stores in the desti-
nation.

ADD, SUB and NEG set fC to the carry out from the most significant bit of the result, and
fV if signed overflow occurred.

3.2.3.2 Division

The DIV instruction takes two destinations and two operands: DIV q,r,x,y computes

xy and x mod y, placing the quotient in q and the remainder in r. The operands are
treated as unsigned. Either destination may be omitted if the corresponding result is
unwanted, but not both.

DIVS performs signed division, rounding the quotient towards minus infinity (17−
7 = −3 rem. −4); DIVSZ rounds towards zero (17 − 7 = −2 rem. 3). In all cases the
identity qy + r = x holds, where x is the dividend, y the divisor, q the quotient and r
the remainder.

21

3 Design

3.2.3.3 Logic and shifts

AND, OR, XOR and NOT perform the corresponding bitwise logical operations. SL performs
a left shift, SRA an arithmetic right shift, and SRL a logical right shift. The first operand
to a shift is the quantity to be shifted and the second is the number of places to shift,
which must be between 0 and A inclusive. Shift instructions set fC to the carry out of
the shift.

The following code sets register 1 to zero if it was previously negative:

NEW temporary register
NEW

DEF 3, #-1@8 number of bits in a word minus 1
MOV 2, 1 copy value
SRA 2, 2, 3 make mask out of sign bit
KILL constant no longer needed
NOT 2, 2 invert mask
AND 1, 1, 2 clear if it was negative; otherwise leave it alone
KILL mask no longer needed

3.2.3.4 Comparisons

The instructions SUB, AND and XOR may also be used to make comparisons by omitting
the destination, so that they affect only the flags. Examples of this use are given in
section 3.2.5.

3.2.4 Addressing memory

LD_w x,[a] loads the w-wide quantity at the address in register a, which must be a

multiple of w, into register x. The quantity is zero-extended if necessary. ST_w x,[a]
stores the least significant w bytes of x at the address in a.

Though nothing may be assumed about the ordering of the bytes in multi-byte quan-
tities, it is possible to write some machine-dependent operations in a machine inde-
pendent way; for example, the following code reverses the order of the bytes in the
two-byte quantity at the address in register 1:

NEW

NEW

DEF 3, #1

ADD 2, 1, 3 copy address and add 1
KILL

NEW registers to hold bytes
NEW

LD_1 3, [1] load bytes
LD_1 4, [2]

ST_1 3, [2] store bytes the other way around
ST_1 4, [1]

KILL kill all registers used

22

3.2 Instruction set

KILL

KILL

KILL

3.2.5 Branching

Bc a causes a branch to address a if condition c is true. There are fourteen conditions
such as EQ (“equals”), MI (“minus”) and CS (“carry set”), plus AL (“always”). The ad-
dress a is a label, or a register holding the value of a label. Arbitrary addresses may
not be used as branch targets; as mentioned in section 3.1.2, code need not even re-
side in addressable memory. Stack items which are live at the source and destination
of a branch must match, in the sense that they must have the same type, and constants
must have the same value.

The following code uses conditional branches and the comparison instructions intro-
duced in section 3.2.3.4 to count the number of ones in register 1.1 Note that register 2 is
used as a counter, so its initial value is MOVed into it, as it is a variable register, whereas
registers 4 and 5 are constant, so their values are DEFed.

NEW ones counter
MOV 2, #0

NEW temporary register
NEW constant needed in loop
DEF 4, #1

SUB , 1, 2 test special case where input is 0
BEQ .exit finish if so
.loop label marking the start of the loop
ADD 2, 2, 4 increment counter
SUB 3, 1, 4 word−1
AND 1, 3, 1 knock off least-significant one in word
BNE .loop go back for next one if non-zero
.exit

KILL

KILL

3.2.6 Subroutines

The instruction CALL a,n,[t1,. . . ,tn] calls the subroutine at address a. The top-most n
items on the stack are passed as arguments to the subroutine. t1 . . . tn describe the return
values as follows: t1 gives a number of registers, t2 the size of a chunk, t3 a number of
registers and so on. The effect of a CALL on the stack is as if the following code were
executed:

1There are much more efficient ways of doing this, but they are useless for the present purpose, as they
involve neither comparisons nor loops.

23

3 Design

KILL (n times)
NEW (t1 times)
NEW_t2
...

The arguments passed to the subroutine are killed, and the return values are created in
their place.

A subroutine entry point is indicated by a label preceded by an s. The s may be
followed by l if the subroutine is a leaf routine, that is, it contains no CALL instructions;
this may allow the translator to optimize it. On entry to a subroutine the stack holds the
arguments passed to it, with the return address and any other callee-saved information
in a chunk on top of the stack.

RET c,[i1,. . . ,in] returns from the current subroutine. c is the chunk holding the
return address, which is the stack item directly above the last argument. The return
values i1 . . . in are copied into the caller’s stack.

The following code shows the use of a subroutine which computes the sum and dif-
ference of its arguments.

NEW declare arguments
NEW

sl.sumdif subroutine entry point
NEW register to hold difference
SUB 4, 1, 2 calculate difference
ADD 1, 1, 2 calculate sum
RET 3, [1, 4] return results
KILL kill the live registers
KILL

KILL

KILL

.main entry point of program
NEW set up arguments
MOV 1, #5

NEW

MOV 2, #7

CALL .sumdif, 2, [2] call subroutine

The type and number of the subroutine’s arguments are given by the state of the stack
at the subroutine label. In this case, two registers are declared directly before the label.
The label itself effectively declares the return chunk. The calculation is performed, and
the RET instruction specifies which stack items should be returned as results. Finally, all
four stack items live at the end of the subroutine must be killed.

Mite’s specification does not define how execution commences. The convention used
here is to start execution at the label .main.

24

3.2 Instruction set

3.2.7 Functions

Mite supports the host environment’s calling convention with functions, allowing Mite
code to call and be called by native code. Function labels start with f, and CALLF and
RETF call and return from functions. (Subroutines need not obey the system calling con-
vention, which allows them to return multiple results, and have a more lightweight
implementation.)

Function labels have up to three modifiers after the initial f: a leaf function is marked
l, a function whose return value is a chunk is marked c, and a variadic function is
marked v. The modifiers must occur in that order.

There are two forms of CALL for functions: if the function returns a register or has no
result, CALLF is used, which has the same syntax as CALL, but allows a maximum of one
return value. For functions returning a chunk, CALLFC is used; instead of a return list, a
single item is given, which is either the chunk into which the result should be copied, or
a register containing the address at which it should be stored. When a variadic function
is called, V must be appended to the instruction name.
RETF has the same syntax as RET, but functions may return at most one value.
The following example demonstrates a variadic function which returns a chunk:

NEW_0@2 chunk to hold result
NEW the variadic arguments
DEF 2, #2

NEW

DEF 3, #4

NEW

DEF 4, #7

NEW

DEF 5, #3 the number of variadic arguments
CALLFCV .f, 4, 2 pass 4 arguments and receive result in chunk 2
...

NEW_0 the variadic argument chunk
NEW the argument count
flcv.f a variadic leaf function returning a chunk
NEW address increment
DEF 4, #0@1

NEW accumulator for sum
NEW accumulator for product
MOV 5, #0 set sum to zero
MOV 6, #1 set product to one
NEW pointer to variadic arguments
MOV 7, 1 address of first argument
NEW

NEW

DEF 9, ashift

SL 8, 2, 9 get address of end of variadic arguments
KILL

ADD 8, 8, 7

25

3 Design

NEW temporary
.accumulate

LD_a 9, [7] load variadic argument
ADD 5, 5, 9 add to sum
MUL 6, 6, 9 multiply into product
ADD 7, 7, 4 increment the address
SUB , 7, 8 repeat until all arguments read
BNE .accumulate

KILL get rid of temporary
NEW_0@2 create chunk to hold results
MOV 8, 9 get address of return chunk
ST_a 5, [8] store sum
ST_a 6, [8, 4] store product
RETF 3, [9] return result
KILL kill all items
KILL

KILL

KILL

KILL

KILL

KILL

KILL

KILL

As for subroutines in the previous section, the state of the stack at the function label
is taken to declare the function’s arguments, and the function label itself implicitly de-
clares the return chunk. The variadic arguments to a function come below the normal
arguments on the stack. They are stored in chunk 1, which must be declared to have
size 0; the format in which they are stored is system-dependent. In this example it does
not matter provided that each argument occupies a single word.

The modelling of functions, in particular the treatment of variadic arguments, struc-
ture return values and the return chunk, is discussed further in section 4.3.3.

3.2.8 Non-local exit

The CATCH and THROW instructions, together with handlers, allow non-local exit from a

subroutine or function. A handler is a label with h prefixed. CATCH r,l saves the value
of the stack pointer at handler label l in register r. Later, while the subroutine in which

CATCH was executed is still live, THROW l,r,v returns control to the handler at l. The
value v overwrites the top stack item live at the handler, which must be a register. The
value of l in the THROW instruction must be the same as in the CATCH that yielded the
value of r.

When THROW is executed, the stack’s state is changed to that of the handler label.
Since this may not be the same as at the corresponding CATCH instruction, only those
stack items which are live at both the CATCH and the handler label have a defined value.
Moreover, since the values of registers that are cached in physical registers may be lost

26

3.2 Instruction set

when a THROW is executed, all registers are assumed to be held in memory at a handler,
and the SYNC modifier is provided to save all registers to memory. It has one operand,
a handler label, which is used to decide which registers need to be saved. SYNC may be
attached to a CALL or THROW instruction, and is only needed when the handler is in the
same subroutine or function as the instruction being SYNCed. The workings of SYNC are
explained further in section 4.3.6.1.

The following code demonstrates the use of CATCH and THROW. The code from
h.handler onwards is run three times: first on entry to main, then by the first THROW,
which throws from one point in main to another, and finally by the second THROW, which
causes a non-local exit from the subroutine at .sub. The result is that the four words
at .store are changed from their initial contents of four zeros to the sequence 0, 1,
2, 3. Note that both THROW and CALL must be decorated with SYNC, so that the virtual
registers live at the handler are sure to have the correct values when the handler is
reached.

.main

NEW

DEF 2, .store address of results
NEW

MOV 3, #1 first value to store
h.handler

NEW address offset
NEW shift
DEF 5, ashift

SL 4, 3, 5

KILL

ST_a 3, [2, 4]

DEF 4, #1

ADD 3, 3, 4 next value to throw
NEW

CATCH 5, .handler get catch value
NEW

MOV 6, .handler address to throw to
DEF 4, #2 second value to store
SUB , 3, 4 decide next destination
BEQ .same based on previous result
DEF 4, #3 third value to store
SUB , 3, 4

BEQ .sub

RETF 1, []

.same

DEF 4, #2

THROW 6, 5, 4 SYNC .handler throw to same subroutine
.sub

DEF 4, #3

CALL .sub, 3, [] SYNC .handler in fact, this call won’t return
KILL kill remaining items
KILL

27

3 Design

KILL

NEW create parameters
NEW

NEW

sl.sub

THROW 3, 2, 1

KILL

KILL

KILL

d.store

SPACEZ_a 4 words to hold results

3.2.9 Escape

There is a general-purpose escape mechanism: ESC #n performs implementation-
dependent function n.

3.2.10 Optimization directives

The instruction RANK r,n changes the rank of register r to n. The ranks of the other
registers are altered accordingly so that all the ranks are still distinct and in the range 1–
N, where N is the number of registers. The mechanics of ranking are explained further
in section 4.3.1.2.

REBIND causes the binding of virtual to physical registers to be updated to reflect
the current ranking. It is intended for use just before a loop, to minimize spills within.
The thinking behind REBIND is explained in section 4.3.1.3.

3.3 Data

Constant data and static data areas are declared in data blocks. A data block starts with
a label prefixed with d, or dr if the data is to be read-only, followed by a series of data
directives enclosed in brackets.

The directives are LIT_w v1, . . . ,vn , which stores literal values v1 . . . vn of width w,

and SPACE_w n , which reserves space for n w-wide quantities; SPACEZ causes the space
reserved to be zero-initialized. All values stored and space reserved are aligned to the
given width.

28

3.4 Object format

3.4 Object format

The object format is a simple byte-code. Multi-byte quantities are stored in little-endian
order. The three main building blocks of the encoding are:

Numbers The number is divided into 7-bit words. Each is padded to a byte with a zero
bit, except for the least-significant word, which is padded with a one. The bytes
are stored most-significant first.

Header The object module header consists of a four-byte magic number, then a single-
byte version number, then three bytes giving the length of the module in bytes,
excluding the header. The number of labels follows, and finally the name of the
module, stored as a counted string.

Instructions Each instruction consists of a one-byte opcode followed by a list of
operands. When an operand consists of a list of values, the list is prefixed by its

length. For example, the instruction RET 4,[1,3,7] is encoded as 86h 84h 83h
81h 83h 87h. The first byte is the opcode, the second is the encoding of the return
chunk, number 4; the third byte encodes the length of the list of return items,
which is 3. The return items follow.

3.5 Pitfalls

Programming Mite is deceptively similar to programming in a conventional assembly
language, but there are fundamental differences that should be borne in mind. Almost
all the pitfalls concern the use of registers.

Machine-independent coding is tricky It is easy to write Mite code that is machine-
dependent. The biggest problem is assuming a particular width for the registers
by mistake, just as in C one is tempted to assume particular sizes for types. A
similar problem arises with optimization: it is tempting to try to second-guess
the translator. Since Mite code may be run on a variety of machines, this is
bootless; however, there is no clear dividing line between machine-independent
and machine-dependent optimizations. The best weapon against both types of
machine-dependence is never to think in terms of a particular host machine.

Registers are plentiful Although one should use as few registers as possible, quantities
should always be held in a register where possible, rather than in memory or a
chunk, so that the translator has a chance to allocate them to physical registers.

Registers are not concrete One of the hardest things to remember is that registers
have limited scope, and that their use must be checked more carefully than in
most assembly languages, especially around and across branches.

29

3 Design

The stack must match across branches Bugs are easily introduced by branching to a
place with a different stack state; the type of each item live at both source and
destination of a branch must match. The next point is an example of this.

Constants are static DEF operates statically, not dynamically, which can create prob-
lems in loops. The following code:

DEF 1, #4

.loop

DEF 1, #3

BAL .loop

is illegal, because the value of constant register 1 is not the same at the BAL, where
its value is 3, as at .loop, where its value is 4.

Live ranges may not contain holes Since registers must be created and destroyed in
stack order, live ranges may not contain holes. This places restrictions on the or-
der in which compilers can linearize flow graphs; or alternatively, on how tightly
they can define live ranges. For example, if a register is live in the test of an if

statement, and continues to be live in the then branch, but not in the else branch,
then the compiler must either compile the else branch second, and kill the reg-
ister at the end of the then branch, or it must allow the register to be live in the
else branch, even though the quantity it holds is not used. This is the converse of
the nesting problem discussed in section 4.3.1.2.

Code sharing is clumsy Since RET may only be used to return from the textually cur-
rent subroutine or function, using a portion of code as part of two or more sub-
routines or functions is only possible using continuation addresses, which is awk-
ward and inefficient. Therefore, shared code should normally either be encapsu-
lated in a subroutine or inlined. Code sharing is discussed further in section 4.6.

Data may move Since there is no fixed relationship between the locations of code and
data, there is little point storing data in places where it must be branched around
simply in order to improve locality. On the other hand, storing data between func-
tions or after unconditional branches may improve locality on machines that store
data and code together,2 and be harmless on those that do not.

2If they do not have separate instruction and data caches

30

4 Rationale

The details of Mite’s design are now examined to show the reasoning behind them.
First, section 4.1 discusses Mite’s overall architecture; section 4.2 concentrates on the
treatment of registers, its most important single feature. Next, section 4.3 scrutinizes the
instruction set. The object format and semantics are examined in sections 4.4 and 4.5. Fi-
nally, section 4.6 discusses some shortcomings of the design. Throughout, comparisons
are drawn with alternative design decisions in other systems.

4.1 Architecture

Mite’s architecture is very like that of a conventional RISC processor. The most impor-
tant difference from that of a real processor, and those of most other VMs, is that its
definition leaves a number of behaviours undefined for the sake of implementation
efficiency. This is done in two ways. First, the behaviour of instructions when they are
misused (such as attempting to divide by zero) is not specified, which removes the need
for costly translate-time and run-time checks to detect incorrect usage. Secondly, when
some behaviour of an instruction differs between target machines, it is usually omitted,
to keep Mite architecture-neutral. Hence, MUL does not affect the condition flags (see
section 4.3.2).

This is similar to the way that the ANSI C standard [6], for similar reasons, makes
many behaviours “implementation-dependent”, meaning that they are not necessarily
defined.1

Dynamic code generation systems such as VCODE and PASM take a similar approach;
VMs that support sandbox execution or verification rely on run-time checks or verifica-
tion to catch illegal usages (they may also allow the execution of unverifiable code, like
Microsoft’s .NET common runtime [77]). Cintcode is rare in being almost completely
specified; this reflects its heritage of running on 8-bit systems where optimizations of
this sort are less beneficial.

4.1.1 Load-store three-operand register model

One of the most important characteristics of a virtual or real machine is the way it
addresses data. Mite has three key features in its addressing mechanism: first, its use of
registers; secondly its load-store architecture; and thirdly, three-operand instructions.

1As opposed to “implementation-defined”, meaning that the behaviour must be defined, but may differ
between implementations; this is not portable, and hence not useful for Mite.

31

4 Rationale

Most VMs have a simple and restricted set of addressing modes. This is because
translating a wide range of addressing modes is a lot of work for a translator, and can
impose an unacceptably high cost on instruction decoding, particularly for intepreters.
Like VCODE, the fastest translating system discussed here, Mite uses a load-store model,
which restricts memory access to load and store instructions, and provides only two
memory addressing modes, register indirect and register indirect plus offset. Simi-
larly, Mite also restricts other addressing modes: most instructions only take register
operands, and immediate constants are confined to two instructions.

This simplicity speeds up code generation on RISC machines, because it uses only
addressing modes that most of them directly support; however, it makes it harder to
take advantage of the richer addressing modes found on CISC machines, which Dis and
the JVM can better exploit, with their use respectively of memory and stack operands.

However, Mite’s registers are easier to map efficiently on to the register set of most
modern processors, especially of RISC machines that have a large orthogonal register
set, than the JVM’s stack items, or Dis’s memory locations. Even though registers must
sometimes be spilt, and hence mapped to memory or stack locations, it is easier to do
this than vice versa. This is because stack and memory locations can normally be ac-
cessed indirectly, so when mapping them to registers, aliasing must be detected; since
virtual registers cannot be accessed indirectly, they cannot alias one another. Similarly,
information about the liveness and importance of quantities, which is vital for good reg-
ister allocation, is harder to specify for memory and stack locations, because memory
locations are too numerous and stack items can be permuted.2 Mite’s register declara-
tions (see section 4.3.1.1) and ranking (see section 4.3.1.2) provide a simple way to give
information about the liveness and relative importance of virtual registers. The JVM
and Dis do not try to provide such information, and hence need much more complex
JIT translators to obtain the same performance.

The use of three-operand instructions may seem to run counter to the simplicity of
Mite’s addressing modes, by adding an implicit register move to each operation. How-
ever, it can equally be seen as a simplification, as instructions are not forced to over-
write one of their operands. For the benchmark programs, the use of three-operand
instructions improves the code density of virtual code, though only by 1.8%, and with
a standard deviation of 3.4%. On 3-operand RISC machines, where the extra operand
is free, there would be a larger saving in native code; while three-operand instructions
could be generated from a two-operand virtual instruction set, it would complicate
and slow down translation. On two-operand machines, each instruction whose first
operand is different from its second generates an extra register copy; however, it is as
easy to do this as to generate the register copy from an explicit copy instruction (see
section 5.5.2.2).

2To avoid this difficulty, the .NET virtual machine [77] forbids the permutation of stack items.

32

4.1 Architecture

4.1.2 Memory

Mite’s memory model is just concrete enough to allow memory access at different
widths, and to allow endianness-dependent data to be dealt with where necessary. Un-
like Cintcode, Mite cannot be completely concrete, as it must cope gracefully with dif-
ferent word widths and endiannesses (Mite’s permutation functions (see section A.3)
even cope with machines that are neither big nor little-endian). On the other hand,
Mite cannot completely abstract the structure of memory, like the JVM, as it must allow
quantities occupying a specific number of bytes to be loaded and stored.

This insistence on laying out memory in bytes rather than allowing an arbitrary or-
dering of bits is compatible with the vast majority of processors, and allows binary data
with a particular byte ordering, such as big-endian network packets, to be dealt with
simply. At the same time, the load and store instructions can use the host’s preferred
byte-ordering. It is quite possible for a Mite program to discover the byte ordering of
the machine on which it is running, and then use optimized routines that assume a
particular ordering; it is almost always reasonable to assume that memory is big or
little-endian. Once again, Mite puts the tradeoff between efficiency and portability in
the hands of the programmer. Most other systems that aim strongly for efficiency, such
as VCODE and C-- also use the native bit ordering (though not necessarily specifying
that it must be a byte ordering). The JVM and Dis say nothing about byte ordering; in
order to remain flexible, the JVM therefore has a large range of primitive types, and
dealing with anything else is problematic. Dis attempts to remain simple, and therefore
lacks some commonly used types, such as 16-bit integers. Mite has neither problem.

The assumption of a linear address space whose addresses can be held in a machine
register is of a similar quality: it matches most real machines, while keeping the pro-
gramming model simple and efficient. If Mite were to allow 16-bit registers, or registers
larger than 64 bits, this assumption might change, but 32-bit machines tend to have 32-
bit address spaces, and 64-bit machines 64-bit address spaces. VCODE and PASM take
the same approach, while the JVM, by avoiding explicit pointers, avoids the problem
altogether.

Code memory is organized in a different way: as the length, format and meaning
of code varies between machines, there is no compelling reason to make it address-
able as data. Allowing separate code and data address spaces means that Mite can be
implemented on Harvard architecture machines, and makes it easier to build more se-
cure systems on top of Mite in which code cannot be read or written, without changing
Mite’s semantics. Nevertheless, code is addressable via locations (see section B.9), so
it is possible to build branch tables; also, it is of course possible to write Mite code
that directly manipulates program code in a known format, when it is held in data-
addressable memory, as it usually will be.

Mite’s memory model therefore has most of the advantages of a fixed memory model
such as Cintcode’s; indeed, at the cost of portability, a fixed memory model can be
assumed in Mite code. At the same time, Mite remains architecture-neutral.

33

4 Rationale

4.1.3 Three-component numbers

Three-component numbers were introduced to allow compilers to optimize accesses to
fixed array elements or record fields, even when their size is not known at compile time.
The example in section 3.1.1.1 shows how this can be achieved for a record consisting
of two words (which could be 32 or 64 bits) and a 32-bit integer. In particular, it shows
the use of the third component in rounding up from 4-byte to word boundaries.

For arrays, three-component numbers can be used to access an element whose index
is known at compile time. Calculating the address of run-time determined indices is
made easier by the ashift constant (see section 3.1.1); an index into an array of words
can be turned into an offset by the following code:

register 1 holds the index
NEW create a register to hold the shift
DEF 2, ashift set the shift
SL 1, 1, 2 turn the index into a shift

Three-component numbers are just one point in a spectrum. At one end, Cintcode
has a single fixed-size datatype, the 32-bit word, and therefore works less efficiently
on machines with different natural sizes. In VCODE and C-- the sizes of data structures
are known (and in C--’s case, specified) at compile time, but the generated code is not
binary portable. Next come systems that have mostly fixed-size datatypes, and pointers
whose size cannot be explicitly mentioned in virtual code. Dis, the JVM, and ANDF all
calculate the sizes of data structures at load time, and therefore offsets to known fields
must be calculated at run time, or special array access instructions must be used. Mite
is unique among the systems discussed here in allowing compile-time calculation with
quantities whose actual value is not known until run-time.

Still, Mite is not at the end of the spectrum. Constants could be polynomials in the
word size: this could be used to express as a manifest constant the size of a word array
which had as many members as there were bits in a word. However, an additional
component would then be needed for each possible rounding up; for example, if a 16,
32 or 64 bit word size was allowed, then a rounding up from 2 to 4 byte boundaries
would be required. Finally, to allow all possible offsets in a language such as C to be
calculated at compile time in a fully portable manner, an extra component would be
required for each independently-sized type, such as char, int, long, void * and so
on. A compiler could end up calculating with linear combinations of a dozen variables
where originally it worked with constants. This is clearly unacceptable; Mite’s scheme
keeps the complexity to a minimum, while allowing the commonest optimizations to
be expressed.

One point of particular interest to C compilers is that since three-component numbers
are manifest constants, they can be returned as the value of sizeof, which can therefore
be used as normal, even in constant expressions.

Finally, note that it is of course possible for Mite code generators to delay calcula-
tion of offsets to run time, or to assume a fixed word size, and thereby trade compiler
simplicity for loss of portability or run-time speed. In any case, a minimal overhead is

34

4.2 Registers

imposed on translators: since the translator knows the machine word size, it can turn
three-component numbers into ordinary constants as they are decoded.

4.2 Registers

The treatment of registers is the linchpin of Mite’s design: most of its goals and con-
straints converge on this one element. As noted in section 4.1.1, how a VM addresses
memory is an important characteristic. It is also one of the ways in which VMs tend to
differ most.3 Hence the JVM may be described as a stack machine, Dis as a memory-
to-memory machine, VCODE as a register machine, and Cintcode as an accumulator
machine.4 As discussed in section 4.1.1, Mite is register-based in order to map easily on
to current machine architectures. This implies that Mite’s registers should correspond
as directly as possible to machine registers, and this is exactly what Mite’s method of
handling registers aims to ensure.

There are three main differences between the register sets of different processors:
first, the size of registers (usually, they are all the same size); secondly, the number
of registers, and finally, the uses to which each register may be put: some processors
assign special rôles to certain registers. The last of these varies too widely to be dealt
with in a general way; each translator must deal with it ad hoc. The first is dealt with
by allowing two register sizes, as discussed in section 4.2.4. The second is by far the
most difficult to deal with: the only practical way seems to be to allow an unlimited
number of virtual registers (section 4.2.1), which in turn introduces further problems,
which are the subject of the rest of this section. The handling of registers is also affected
by the varied ranges of immediate constants on different machines (section 4.2.5), and
by argument and result passing under system calling conventions (section 4.2.2).

4.2.1 Unlimited virtual registers

Since supporting unlimited virtual registers creates some of the trickiest problems in
Mite’s design, it is necessary to justify their use in the first place.

There are at least four possible candidates for the “right” number of registers:

Few Have only as many as the most register-starved architecture (say, 6 for IA-32).
GNU lightning [16] does this, because it speeds up translation by allowing a fixed
mapping from virtual to physical registers, and still gives adequate native code
quality. However, lightning is aimed at dynamic code generators which typically
apply few optimizations, and hence tend to use few registers. GNU C (-O2) needs
to spill for most programs even with 10 registers, as on the ARM,5 and figure 6.2

3The same used to be true of processor architectures, but in recent years the majority have converged on
the load-store register model.

4In fact it has two general-purpose registers that behave like a two-element stack.
5Admittedly, GNU C does not have a graph colouring register allocator, so its output is not the acme of
register allocation.

35

4 Rationale

shows that performance of Mite-generated code increases as the number of regis-
ters is increased, at least up to 10.

Enough Have as many registers as are needed. 16 or 32 might be plausible numbers.
But since some programs will still cause spilling, both compilers and translators
must cope, independently, with register spilling. Worse, compilers must spill vir-
tual registers, while translators spill physical registers; these two types of spilling
could easily interact badly. VCODE effectively takes this approach by allowing the
physical registers to be claimed and released. This however means that, in gen-
eral, different virtual code will be generated on machines with different numbers
of physical registers; to obtain portable code, the minimum number of registers
must be assumed once more.

Many Have a large fixed number of registers, say 256 or 1,024. Compilers could then
reasonably fail if they run out of virtual registers, or generate much poorer code.
Nevertheless, this is just the previous option with different tradeoffs, and special-
case code is still required in both compiler and translator, even if only to detect the
limit being exceeded; also, building in a fixed limit does not seem satisfactory, and
could pose problems for machine-generated code, such as the output of compilers
that use C as a target language.

Unlimited Have an unlimited number of registers. This simplifies code generation,
though at the same time it subtly alters the notion of what a register is, as a com-
piler can use as many registers as it likes, although as with Mite, register assign-
ment and co-location may still be an issue (see section 4.3.1.1). The translator is
more complicated than with a minimal number of registers, but no worse than
for the other options, as from a translator’s perspective the number of physical
registers is fixed, as is the number of virtual registers in any given program. To
achieve a good translation the virtual registers must be ranked, but this is also
true for the previous two alternatives.

The last option is the most aesthetically attractive, gives the best potential performance,
and is no worse to implement than other options that give good performance. Stack
machines (virtual and physical) effectively adopt this solution, but with the overheads
that come with using a stack rather than registers.

4.2.2 Stack

Mite’s stack is its most complex structure. From the code generator’s point of view it
combines virtual registers, argument and result passing, and stack frames. From the
translator’s point of view it supplies the information necessary to arrange physical reg-
ister allocation and spilling, and to perform function call, entry and return. These func-
tions are interrelated in most systems via the system calling convention. Hence, as at
several places in Mite’s design, the twin requirements of portable virtual code and effi-
cient native code force a certain degree of complexity. Mite must match the machines it
targets, so these features are best combined into a single structure.

36

4.2 Registers

The stack, therefore, combines the following elements:

Unlimited number of registers A stack allows an unlimited number of registers with-
out needing to specify the total number used in advance, or a fixed maximum.

Register live ranges Stack elements can be popped as well as pushed, so registers’ live
ranges can be delimited, though registers must be created and destroyed in stack
order. This is a reasonable restriction, as most virtual registers correspond either
to temporaries which are live for the evaluation of a single expression, or register
variables, whose live range corresponds to a nested block (either lexical or dy-
namic), which itself obeys a stack discipline. In any case, virtual registers can be
reused (see section 4.3.1.1).

System stack The system stack, whose requirements generally correspond to those of
conventional languages such as C and Pascal, tends to hold a series of frames
for active procedures, which contain a saved program counter and perhaps other
registers, local variables, and incoming and outgoing procedure arguments. It is
also used for block-local storage, such as temporary data areas, and spilled regis-
ter values. Modelling the system stack in the virtual register stack simplifies the
spilling of virtual registers (see section 4.3.1.1), and makes virtual register sets
correspond to stack frames (section 4.2.3 explains why this is desirable).

Function calling Certain virtual registers correspond to incoming and outgoing proce-
dure arguments and return values; chunks allow structures to be easily passed by
value. Making arguments and return values correspond to the top-most virtual
registers on the stack makes it easy for the translator to move arguments and re-
turn values into the right place for function calls; usually it can be arranged so that
they are already in the correct virtual registers when the call or return instruction
is reached.

Stack allocation Chunks allow limited stack allocation (since the size of block allocated
must be statically determined, they cannot be used to implement C’s alloca),
suitable for run-time scratch space, local structures and arrays, as well as passing
structure arguments by value, as mentioned in section 3.1.3.

Most other systems fall into one of three categories: either they use a processor-like
model that splits stack and registers, like Cintcode, VCODE, PASM and TAL, or they use
a computation stack as a simple unifying structure, as the JVM does. Dis goes one step
further by eschewing temporary storage in favour of using only memory locations.
Finally, systems such as ANDF and Juice avoid referring to temporary storage by de-
scribing computations with trees.

4.2.3 Numbering

Mite allows an unlimited number of registers, as discussed in the previous section. Most
processors have global register numbers, but this is useful only because a given num-
ber always refers to the same physical register. With an unlimited number of virtual

37

4 Rationale

registers, it is necessary for good register allocation to be able to map virtual registers
to different physical registers, so the advantage of global numbering is lost. Globally
numbered registers are also difficult to spill without wasting time and memory if they
are spilt to some global area, and are tricky to spill locally. Frame-local numbering al-
lows efficient, simple spilling to the current stack frame: the procedure is exactly the
unit within which stack offsets to spill locations are statically determined. This is why
there is no point making the numbering finer grained (for example, block-local).

The fact that registers must be explicitly passed to and returned from subroutines
and functions may seem like a disadvantage of using local numbering. In fact, to allow
subroutine and function calls to be both portable and efficient, it must be possible to use
different calling conventions on different machines, and in particular, to support each
system’s function calling convention. Hence, the number and type of arguments passed
to each function needs to be specified. Since the function’s type may not be known at
the call site (for example, if it is declared later, or in another module), and since in any
case most C calling conventions permit functions to be called with different numbers of
arguments, the number and type of arguments must be specified by the call. Actually,
the type is already known (because the type of each stack item is known), so only the
number of arguments needs to be given in the CALL instruction.

Another consequence of local register numbering is that registers declared in one
subroutine or function may not be accessed by its callees. Allowing such access would
complicate the design (for example by adding a notation to name variables in an outer
frame) with little return; it is in any case possible to access registers in outer stack frames
via displays or static chains, as discussed in section 5.4.1.

Most other systems either lack explicit registers, like the JVM, directly expose the ma-
chine’s register set, as VCODE does, or have a fixed small set, like Cintcode and GNU
lightning [16]. ICODE and PASM use a similar approach to Mite. The JVM and PRACTI-
CAL impose their own calling conventions, which are therefore simpler to use, but re-
quire glue to interwork with native libraries. VCODE, ICODE and GNU lightning abstract
from the native calling convention (though lightning in particular places restrictions on
the sort of calls that may be made, forbidding more than six arguments, and not allow-
ing structures to be passed by value). These are all rather more complicated to use than
Mite, but allow slightly more efficient code to be generated, by revealing more details
of the way that arguments and return values are marshalled.

4.2.4 Sizes

Mite restricts registers to a single size from a choice of two: 32 or 64 bits. These match the
word size of most modern microprocessors, while simplifying address calculations and
the difficulties of performing word-size-independent arithmetic (see section 4.1.3). With
a little care registers can be treated as 32-bit words most of the time;6 in the worst case
only two versions of code are needed, one for each word size. The only major problem

6The results of most operations can be converted to a 32-bit result by simple truncation; only division
and right-shifting need special attention, as the contents of particular digits of the operands can affect
the contents of less significant digits of the result.

38

4.3 Instruction set

is the lack of machine-independent 64-bit arithmetic, but this seems to be rarely used. If
it is desired, it can be implemented using two sets of code, one for 32-bit systems, and
one for 64-bit systems; the correct code can be chosen at run-time.

Most other VMs use completely fixed types, like the JVM, Dis and Cintcode; some,
like VCODE, also allow access to the natural machine word. Having a range of types is
more flexible than Mite’s solution, but requires the translator to generate special code
for types not directly supported by the machine (for example, 64-bit arithmetic on 32-bit
machines), and type conversion code.

4.2.5 Constants

Since the range of immediate constants varies between processors and even between in-
structions and addressing modes on the same processor, compilers cannot know when
to use an immediate constant and when to load the constant into a register. Simplicity
demands that Mite adopt one or the other mechanism uniformly. Tying a constant to a
virtual register allows it to be assigned permanently to a physical register if it does not
fit in a particular immediate field, rather than forcing it to be loaded repeatedly. The
DEF instruction (introduced in section 3.2.2) declares constants with static scope so that
they can be more easily optimized, as the translator knows exactly where a constant
register’s value is fixed.

Support for constants is limited in other systems: while most have some form of con-
stant, these tend either to be ordinary immediate constants, or global constant values;
no other system discussed here gives constants a live range as Mite does.

4.3 Instruction set

The instruction set’s main features are:

Minimal abstraction The instruction set allows Mite programs to be portable, while
making the translation into native code trivial for the majority of instructions on
most machines.

Few instructions The instruction set follows the common observation that complex in-
structions are rarely used, and provides just enough instructions to permit good
code to be generated, rather than attempting to exploit CISC instruction sets di-
rectly (though a sophisticated translator may do so by techniques such as peep-
hole optimization; see sections 5.5.2.1 and 6.2.3.2).

Three-operand instructions Most instructions take three operands, as discussed in sec-
tion 4.1.1.

Restricted addressing modes Immediate constants and register indirect are confined
to special instructions, and these are the only addressing modes (other than regis-
ter immediate; see section 4.1.1). The restriction on the use of immediate constants
is discussed in section 4.2.5.

39

4 Rationale

Unlike many VM instruction sets, Mite’s is untyped. Typing is generally provided
to aid safety, as in the JVM, and to allow the correct code to be generated for different
types of quantity, as in VCODE. Most instruction sets contain many more specialized in-
structions, such as the JVM’s Java method dispatch instructions. Even VCODE has hton
and ntoh for changing host byte order to network order and vice versa. Mite omits them
in the interests of language neutrality and simplicity. Unlike ANDF and Juice, whose
virtual instruction sets are focused on programs, Mite’s is focused on the machine. In
this respect, it is very like C--, despite the superficial difference that C-- looks like a
high level language while Mite is a virtual assembly language.

The rest of this section first discusses some more specific features: register manage-
ment, flags, function calling, division and the escape instruction (ESC). It ends with an
examination of some features that at first sight might seem superfluous.

4.3.1 Registers

Section 4.2.1 discussed the need for an unlimited number of registers; here we examine
the instructions needed to support their use. There are two main aspects to register
management: creation and destruction, and ranking. Finally, the REBIND instruction is
explained.

4.3.1.1 Creation and destruction

The creation and destruction of registers performs three functions: it defines the live
ranges of virtual registers, declares subroutine and function arguments, and gives the
types of subroutines and functions.

This lumps a lot of functionality together, and omits some obvious distinctions. Sec-
tions 5.2.3.2 and 6.3 discuss the disadvantages of not distinguishing temporaries from
register variables, and not identifying function arguments. The use of NEW and KILL to
give the types of a function or subroutine’s arguments may seem odd at first, but it
simplifies the translator, by not requiring extra code to read and construct a new virtual
stack configuration for each function and subroutine entry point.

The NEW instruction is also used to create chunks, which were discussed in sec-
tion 4.2.2. Using NEW and KILL for chunks, and using the same numbering scheme for
registers and chunks, simplifies stack allocation in the translator: spill slots for virtual
registers can be allocated contiguously in the stack frame, along with chunks. If such
a scheme is used, then the space used by a stack item cannot be reused until all the
items above it have been destroyed. This leads to the requirement that items are KILLed
in stack order (as mentioned in section 4.2.2), which again simplifies the translator.
Note that the abstract semantics of KILL allow any stack item to be destroyed (see
section A.5.7). Similarly, chunks are forced to have a statically determined size so that
the address of each spill slot within the stack frame is known statically, and code to
access stack slots can be generated by the translator in a single pass.

40

4.3 Instruction set

4.3.1.2 Ranking

Register ranking is perhaps Mite’s most important innovation. It enables virtual reg-
ister allocation to be performed by the compiler, and in particular, allows any register
allocation algorithm to be encoded so that it can be performed in by the translator in
time roughly linear in the length of the program.

The key problem that ranking attempts to overcome is that, whereas a native com-
piler knows how many registers it has to allocate, and can thus perform register allo-
cation and assignment accurately, a code generator targeting Mite does not know. This
makes virtual register allocation trivial: all quantities that can occupy a register may do
so. Virtual register assignment is trickier: although the supply of virtual registers is un-
limited, performance is improved by minimizing the number used, and by arranging
registers on the stack so that their live ranges nest as well as possible (see section 6.3.3).

Physical register allocation and assignment, however, become rather more difficult.
There are several problems. Fundamentally, the difficulty is that register allocation is
usually performed entirely by one program, either the compiler, in direct native code
compilation, or by the translator, where the compiler generates virtual code (for exam-
ple, Java JIT translators must perform register allocation and assignment). However,
good register allocation and assignment are expensive: traditional algorithms such as
heuristic-aided graph colouring have at least quadratic cost [131], and more recent al-
gorithms trade off performance against running time [52, 100, 131]. A Mite translator
performing full register allocation and assignment would therefore have to make the
same tradeoff. Hence it is necessary to find some way for the compiler to do most of the
work, allowing the translator to use a quick and simple register allocation algorithm to
obtain a good result.

This leads to another difficulty: traditional algorithms assume a constant number of
physical registers, and perform spilling in tandem with allocation. Mite must allow for
all possible numbers of physical registers at compile time. Furthermore, register allo-
cation is not necessarily stable: an allocation for 8 registers might well bear no resem-
blance to that for 9.

A register allocation algorithm can be turned into a ranking algorithm as follows:
perform register allocation assuming that there is only one register available. Then,
fixing this allocation, run the algorithm again, this time with two registers. Continue
until all the virtual registers have been allocated. The order in which virtual registers
are allocated to physical registers at each point in the program then gives their ranks.

Fixing the allocation after each pass gives stability, but means that the allocation is not
necessarily as good as the algorithm can achieve. The allocation is also limited by the
fact that stack items must be killed in stack order, and hence live ranges must be nested
(though this limitation could be removed; see section 7.1.1.1). However, the success of
basically linear algorithms such as [100, 131], which are perforce stable, suggests that
requiring stability need not mean a huge drop in code quality. By this method, register
allocation algorithms can be encoded directly using ranks, without needing explicit
support in the translator, so Mite can take advantage of improvements in this field not

41

4 Rationale

only without changing its design, but without changing its implementation. This ability
seems to be unique to Mite.

A naïve compiler can simply ignore ranking. In this case, virtual registers are allo-
cated to physical registers in the order in which they are declared. This is what the LCC
Mite back end does (see section 6.2.2), and even then, the code quality is not disas-
trously poor.

Other systems rely on either an intelligent translator, like the JVM and Dis, or ad hoc
mechanisms, like VCODE, whose dynamic code generation interface forces its clients to
manage register allocation and spilling. ICODE is closest to Mite: it allows its input to be
annotated with information about usage frequency of code, and then performs its own
live range analysis and register allocation. It is rather more complex than Mite, while
allowing less communication with the compiler.

The quantitative effects of ranking on execution speed are discussed in section 6.1.2;
section 6.1.3 discusses their effect on code density.

4.3.1.3 REBIND

Several different schemes for indicating the relative importance of different parts of the
program were considered. The aim was to enable the translator to generate the best na-
tive code for the parts of the program executed most frequently. Most of these schemes
involved a code priority being attached to each basic block. This seemed awkward to
implement without global analysis of the Mite object code, which is typically slow and
hence runs counter to Mite’s goal of fast translation (but see section 7.2.3).

The problem can be simplified: without inter-function optimization, the only reason
for one section of code to be executed more frequently than another is that it is in a more
often executed loop. The translator is not concerned with optimizations such as finding
invariants or unrolling; these are the compiler’s job. The translator’s main concern is
physical register allocation and assignment. In straight line code it does not matter
in what order register allocation is performed, nor where spill code is placed. In the
presence of loops, however, it makes sense to perform register allocation for inner loops
before outer loops, to give the translator more freedom on code that will be executed
more often. Also, spills and restores should be moved out of loops wherever possible.

Performing register allocation for inner loops before outer loops is not easy in the
current design; a possible mechanism is discussed in section 7.2.3. The REBIND instruc-
tion (introduced in section 3.2.10) is a simple way to move spills out of loops. Instead
of trying to move spill code once it has been generated, a REBIND hints that the map-
ping of virtual to physical registers should be brought up to date at that point. Hence,
virtual registers that happen to have a lower rank than the number of physical registers
are spilled, while virtual registers with a high rank that are not currently assigned to
physical registers are reloaded. This register traffic takes place only once, outside the
loop, and the loop is entered with the best possible register binding (assuming that the
ranks are optimal). Then, spills and restores should only be generated in the loop if
more virtual registers are used inside the loop than can fit in physical registers, when
spilling is inevitable anyway.

The quantitative effects of REBIND are discussed in sections 6.1.2 and 6.1.3.

42

4.3 Instruction set

4.3.2 Flags

Flags are normally computed as the result of an arithmetic or logical operation. They
are mostly used to decide the outcome of conditional branches, although their value
may be used directly, as when the results of several comparisons are combined, or the
carry out of an addition is used to perform multi-word arithmetic.

The implementation of flags varies widely. The Intel processor has a dedicated flags
register while the Alpha writes the result of comparisons to a general purpose register
specified by the instruction. The Intel sets the flags after each instruction while many
other processors do not; the ARM allows any instruction to be executed conditionally
on the contents of the flags, while most processors provide only conditional branches
and compare-and-set instructions.

Mite’s flags model is compatible with all these implementations. There is a virtual
flags register, which implements the four commonest flags: zero, negative, carry and
overflow. Each instruction’s effect on the flags is compatible with most common proces-
sors; where their behaviour differs, Mite’s is undefined: for example, most processors
agree on how all four flags are set by addition, so ADD has a defined effect on all four
flags, whereas there is little agreement about multiplication, so MUL has a completely
undefined effect on the flags. Use of the flags register is heavily restricted: it may only
be read by a conditional branch occurring immediately after the instruction that set
the flags. Hence, on machines that lack a flags register, there is no need to simulate
the virtual flags register at run time. Instead, a temporary register can be used to store
the result of the instruction before a conditional branch, and then released immediately
after the branch. In addition, many common comparison and branch pairs can be im-
plemented as a single compare-and-branch instruction (as available on the MIPS, for
example).

Most systems, like the JVM and VCODE, use compare-and-branch instructions rather
than an explicit flags register. Section 7.1.3 discusses modifying Mite to use this ap-
proach.

4.3.3 Function calling

In order to be able to interwork with system calling conventions, which are typically
geared to C, Mite needs special call and return instructions, and special function labels,
as described in section 3.2.7. The main features that these are needed to support are:

Callee-saved information Since many calling conventions save certain machine reg-
isters along with the return address, entering a function causes a chunk of in-
determinate size to be placed on the stack directly above the arguments. Since
the contents of the chunk is largely system-dependent, it is not specified (except
that it contains the return address), and writing to it is prohibited. This can cause
problems for programs that wish to inspect the contents of stack frames (see sec-
tion 7.1.2).

43

4 Rationale

Variadic functions Calling conventions often treat variadic arguments differently from
normal arguments: for example, they may always be passed on the stack, even if
argument registers are available. Because of this, and in order to allow a native
function to access variadic arguments passed to it by a Mite function, the layout of
variadic arguments must be system-specific. This is unfortunate, as it means that
in general there is no portable way for Mite functions to read variadic arguments.
However, since function arguments tend to be passed as a series of words, all this
means in practice is that the stack direction of the host machine must be computed
at run time, to discover the order in which the variadic arguments are laid out
within the chunk.

Structure-returning functions Like variadic arguments, structure return values are
treated specially by most calling conventions, but not uniformly, so they need
special annotation in Mite code. If the address at which the result is stored is
determined by the caller, then the return item specifier given to the CALLFC in-
struction can be passed to the function; otherwise, the necessary manipulations
can be performed at the call site. Some rare conventions are not supported by
Mite’s scheme: for example, the ARM Procedure Call Standard [9] allows small
structures to be returned in a register rather than on the stack under some cir-
cumstances. Fortunately, this option is not widely implemented by compilers
precisely because it makes calling between native code from different sources
error-prone.

4.3.4 Division

The DIV instruction is intended to work well with both hardware and software division.
It takes advantage of the fact that software division routines usually calculate both quo-
tient and remainder, while allowing optimization when using hardware division which
usually calculates one or the other. Two types of signed division are provided because
both are used. Mite is rare in providing this degree of flexibility and precision: the JVM
provides only rounding-to-zero division, and neither Dis nor VCODE documents the
type of division provided.

4.3.5 Escape

ESC is a general-purpose trap-door instruction. Its main purpose is to allow system calls
to be made inline: since the function number is encoded in the instruction, it can be
directly translated to similar machine instructions such as the ARM’s swi [56] and the
Motorola 680x0’s trap [140]. However, there is nothing to stop implementations using
it in a more portable manner, for example to access functions in a run-time system;
it is sometimes more convenient to do this by number than by name, using ordinary
branches.

There is no set mechanism for passing parameters to ESC. In the ARM implementa-
tion of Mite, the given system call is performed with whatever is the current contents of

44

4.3 Instruction set

the physical registers; by knowing how the translator allocates subroutine parameters
and results, it is straightforward to use ESC by wrapping each invocation in a subrou-
tine. An alternative, presented in section 4.6, is to pass parameters to ESC in the same
way as calling a function. In the case of the ARM, this avoids loading and storing ten
registers around system calls that only use one, for example.

Several other systems provide comprehensive I/O libraries. The JVM as part of Java
and Dis as part of Inferno are exemplary in this respect.

4.3.6 Seeming superfluities

4.3.6.1 CATCH and THROW

CATCH and THROW may at first seem rather high level constructs to implement in Mite,
but they are in fact the only mechanism for non-local return from a subroutine or func-
tion. In addition, as demonstrated in section 5.4.2, they can be used to implement most
common styles of exceptions in high-level languages.

The reason for such high-level primitives is that non-local return involves unwinding
the stack. Although this is generally implemented by simply setting the stack pointer
to a previously saved value, then branching to the return address, in Mite it must be
handled rather more delicately.

Most of the difficulties arise from Mite’s register stack. There are three main prob-
lems. First, the physical to virtual register binding must be restored correctly when a
handler is reached by a THROW. Secondly, unlike a CALL instruction, which calls a routine
with a known return type, a handler may be reached from anywhere, with different
types of return value. Thirdly, the stack pointer must be reset correctly by a THROW, a
tricky operation when the virtual register stack is taken into account.

When a RET is executed, the physical register set current at the return site must be re-
stored, and any return values written to the correct registers and memory locations. The
same process must occur when a THROW is made to a handler label. However, while a RET
instruction returns to code just after a CALL, which can restore caller-saved registers and
store results, a THROW instruction goes straight to a handler label. Hence, the label itself
must cause native code to be inserted to deal with the result passed to the THROW, and
the virtual to physical register binding. This is easily achieved by having a standard
register binding enforced at handler labels, with just the return value mapped into a
register, and all other virtual registers spilt. It is most natural for THROW to pass its result
in a register rather than on the stack, since it alters the stack pointer as part of its opera-
tion. This method has the further advantage that handler labels may also be reached by
a normal branch, or by falling through from the previous instruction (provided that the
translator inserts code just before the handler label to spill all the virtual registers, ex-
cept the one that is normally overwritten by the result, which should be moved into the
appropriate register). This allows a natural implementation of C’s setjmp and longjmp

(see section 5.4.2.1).

There is one more piece in the puzzle of ensuring the correct virtual to physical reg-
ister binding when a handler label is reached: the virtual registers that are assumed to

45

4 Rationale

callee-saved registers

incoming arguments

top of stack at handler

top of stack

handler

thrower

handler’s
callee

ÔÈÒÏ× code goes here

in this part of the stack
saves only registersÓÙÎÃ

Figure 4.1: Throwing from one stack frame to another

thrower
and

handler

ÓÐ is reset to here

in this part of the stack
saves only registersÓÙÎÃ

ÔÈÒÏ× code goes here

Figure 4.2: Throwing within a single stack frame

46

4.3 Instruction set

be spilled when the handler label is reached must indeed be spilled, and to the correct
location.

To see how this is done, let the routine that executes the THROW be called the ‘thrower’,
and that in which the handler label is found the ‘handler’. The two possible situations
are illustrated in figures 4.1 and 4.2: either the thrower is the same routine as the han-
dler, or it is deeper in the call chain. Clearly, the registers live at the handler label must
have been spilt by the time the THROW is performed. If the thrower is the same as the
handler, this is easy: the THROW instruction itself can perform the necessary spilling. In
order to minimize the amount of spilling, this is done by means of a SYNC annotation,
which effectively enforces a caller-saves calling convention; indeed, it is superfluous
if the system calling convention is purely caller-saves.7 Only registers live at both the
THROW instruction and at the handler label need be spilt. If the thrower is not the same as
the handler, it is not possible to wait until the THROW instruction to perform the spilling:
the thrower has no way of knowing which registers need to be spilt and where their
current values reside. Instead, the SYNC annotation is placed on the CALL that leaves the
handler.

Whether it is used on THROW or CALL, SYNC is optional: for THROW it need only be used
when the handler could be the same as the thrower; for CALL, when the callee (or any
more deeply nested callee) could THROW to the caller.

The second problem, dealing with the return type of a THROW, is much simpler. At a
normal RET, the return type is known; handlers, however, may be “returned” to from
anywhere. Mite’s solution is to fix the “return type” of THROW to be a single register
value. If more than a single value needs to be passed, the value can be a pointer, and
the actual result placed in the heap, or deeper in the stack.

The third problem is to ensure that the stack pointer is correctly reset by a THROW.
A CALL instruction implicitly saves the current value of SP, to be restored by the cor-
responding RET. Obviously this is not possible for THROW, where the return site is not
known, nor who will return to it. Hence saving and restoring SP for non-local return
must be done manually. Unfortunately, it is not possible just to read the value of SP,
and then write it back later. First, making SP directly readable and writable would in-
volve devising rules for its use in portable code, which would be hard to get right, as its
use would have to be heavily restricted. Secondly, how would one calculate the value of
SP needed at the handler label from elsewhere in the function? The value of SP will typ-
ically vary during a function as virtual registers and chunks are created and destroyed.
Hence, the CATCH instruction is used to obtain the correct value of SP, by allowing the
translator, with its knowledge of the generated code, to calculate it.

For similar reasons, THROW is needed. It may seem to be merely an abbreviation for:

return value in 1
MOV SP, 2 set SP
BAL 3 branch to handler

7SYNC is similar to C--’s cuts to annotation. This is used at a call site to specify variables that are live
at other points in the procedure, which may be reached by a non-local return from the call about to be
made. SYNC only allows one such point to be specified.

47

4 Rationale

but it covers up some nasty surprises: what if having executed the first instruction it
turns out that register 3 in the next instruction is currently spilt? It has to be reloaded
from its spill location, probably on the stack, but that is no longer accessible, as SP has
already been reset to the value it takes at the handler.

Having obtained a model of non-local return that is rather high-level compared with
the rest of Mite’s instruction set, it must be demonstrated that it is expressive enough.
As the names “CATCH” and “THROW” suggest, the aim is to support exceptions; this is
demonstrated in section 5.4.2. Other sorts of non-local return, such as tail call (see sec-
tion 7.1.5), continuations and coroutines, are not covered. Simple continuations can be
implemented with indirect branches; coroutines, which require multiple stacks, are be-
yond the scope of Mite’s design, and would currently require the multiple stacks to be
emulated for a portable implementation.

CATCH and THROW are unlikely to be used by back ends for existing high-level language
compilers, where exceptions are generally implemented by the run-time system, which
may even be part of the operating system, as in the case of longjmp and signal on many
operating systems. However, if Mite is to be used in OS kernels, it can usefully provide
an exception mechanism to be used by all language implementations.

Given the lengths to which Mite’s design has to go to provide portable non-local re-
turn, it is hardly surprising that other VMs tend not to, apart from those whose model
of control flow is completely concrete, like Cintcode, and hence have no need of explicit
support. There are exceptions: C-- models non-local return explicitly, and, unlike Mite,
allows the stack to be unwound one frame at a time. The JVM’s Java exceptions mech-
anism can also encode many sorts of non-local return. Dis and VCODE, on the other
hand, do not provide any sort of non-local return.

4.3.6.2 SWAP

SWAP is rarely useful, but it is cheap to implement, because Mite must provide routines
to swap two registers for register shuffling. Other ways of expressing the operation will
tend to generate less efficient native code, so it seems more of a waste to omit it than to
include it. Having a more general register-permutation operation, though by the same
argument it would use extant routines in the translator, would have almost no practical
benefit.

4.4 Object format

The object format’s main aims, as stated in section 1.2.2, are to be simple, quick to
read and write, and endianness-independent. The encoding described in appendix C
achieves these aims by being a simple byte code. Multi-byte quantities are encoded as
single bytes in a uniform way rather like the UTF-8 encoding of Unicode [54]; uniform
methods of packing structures such as lists are also used, and instructions have a one-
byte opcode, which is quick to read and decode; bit-field patterns within opcodes are
reused where possible. Hence, object files can be read with a few primitive routines,

48

4.5 Semantics

thus making it easier to write a correct decoder. The lengths of lists are stored before
their contents; similarly, the length of the object file and the number of labels it contains
is given in the header. This means that most data structures can be allocated to their
final size in advance, and means that the end of lists (or the object file, when loading
it) do not have to be detected by a marker, which makes reading an object file quicker,
and writing a robust translator simpler.

The object format is not particularly compact, although it compares reasonably with
native code (see section 6.1). However, it is arguably better to use compression tech-
niques such as SSD [71] rather than make the object code itself extremely compact.
The advantages are first, that a better compression method can be introduced with-
out changing the format; conversely, a new format can be introduced without needing
to rework the compression scheme; finally, ease of decoding and traversing the object
code is not hampered by built-in compression. SSD-compressed code can be decoded
at a fine grain: it is not necessary to decompress an entire program before starting to
translate it. Finally, SSD exploits the structure of both the instruction set and individual
programs to achieve compression ratios comparable with good general-purpose data
compression algorithms; it would be time-consuming to design a special-purpose en-
coding that gave as good compression.

Other VMs use a wide range of object formats. At the highest level, C-- has no ob-
ject format, but stores its programs in conventional text files, using a C-like notation.
Juice’s “slim binary” format takes advantage of the compressibility of abstract syntax
trees. The JVM’s class file format is complicated, with detailed support for the Java
type system; Cintcode is a simple byte-code in which literal data and instructions are
intermingled. Dis’s object format is a half-way house: structured, but simply, separat-
ing code, data, types and symbols. It makes little sense to compare the different object
formats directly, as they simply reflect the widely differing ends for which their VMs
were designed.

4.5 Semantics

The aim of Mite’s semantics is not primarily to allow proofs about programs, but simply
to make Mite’s definition as brief and unambiguous as possible. Mite needs a mathe-
matical definition because it is designed for multiple implementations on widely dif-
fering machines.

The semantics given in appendix A is a small-step operational semantics; it defines
Mite’s behaviour in terms of changes in state on an instruction by instruction basis. In
linguistic terms, it can be thought of as a dynamic semantics. Unfortunately there is a
tension between the needs of the designer and user, for whom a dynamic semantics is
easier to specify, understand, and reason about, and the needs of the translator, which
must reason about the program statically. The meaning ascribed to Mite’s assembly lan-
guage in appendix B is therefore static, and in some places it conflicts with the dynamic
semantics, such as over the meaning of NEW and KILL. Other elements, such as register

49

4 Rationale

ranking, are deliberately omitted from the semantics, as they do not affect the meaning
of programs, but are rather hints to the translator.

Overall, the semantics provides a clear and simple specification of Mite’s behaviour,
but needs further work to turn it into a basis on which proofs can be made. The obstacles
are discussed further in section 6.3.3, and their resolution in section 7.1.7.

Other than Mite, only TAL was designed with formalization in mind. However, many
attempts have been made to give a formal semantics to the JVM [5], which illustrates the
value that is increasingly attached to formal descriptions of key software components.

4.6 Shortcomings

Mite’s design has some shortcomings, which have arisen for different reasons. Some are
due to compromises between the different goals, and lack of time; these are discussed
in section 6.3.3. Some lie outside the scope of Mite’s goals (section 1.2.2); nevertheless,
it is worth looking at how hard they would be to rectify. Dynamic code generation
is discussed in section 7.2.5, sandbox execution in 7.2.6, and verifiable code in 7.1.7.
Garbage collection is considered in section 5.4.3. Other improvements and extensions
to Mite are presented in chapter 7.

Finally, some features have simply been omitted or implemented in a less than ideal
way. As well as the more important deficiencies, there are a myriad tiny lacunae in the
design, and simply not enough time to deal with them all. A few examples are:

LD with sign extension Allowing LD to sign-extend the quantity it loads would be used
by most compilers, and is directly supported by most processors.

Strict constant registers Allowing constants to be loaded with MOV conflicts with the
intent of section 4.2.5, and was only left in because LCC could not use constant
registers (see section 6.2.2). It should only be possible to make a register variable
with UNDEF.

Indicate stack space usage in functions If each function had the total amount of stack
space it used encoded at its start, the translator could easily implement stack pol-
lution (see section 5.2.3.1), and avoid the problem of frequent stack pointer up-
dates discussed in section 6.2.3.2. Since the assembler can calculate this informa-
tion itself, no change would be required to the semantics or assembler syntax.

Parameters to ESC The ESC instruction could be more efficiently implemented for OS
call mechanisms that take a variable number of parameters if it took parameters in
the same way as CALL, as only those virtual registers holding parameters would
need to be passed. However, the first parameter should still be immediate, as
discussed in section 4.3.5.

Code sharing As mentioned in section 3.5, code sharing between subroutines and
functions is restricted in Mite. Code sharing was omitted because it is tricky to

50

4.7 Summary

implement and only of use to compilers that perform inter-procedural optimiza-
tion. Most systems avoid this problem, either through having simpler semantics
for the stack than Mite, like Dis, or by being lower level, like Cintcode. Systems
similar to Mite, such as PASM and VCODE, tend to forbid code sharing; in any case,
it is hard to reconcile with their code generation interfaces, which translate one
function at a time. Sections 6.1.6 and 6.2.3 suggest that Mite should also translate
one function at a time, and per-function translation is one of the changes to the
implementation proposed in section 7.1.6. Code sharing is discussed further in
section 7.1.4.

4.7 Summary

This chapter has shown why, given the goals set out in section 1.2.2, Mite was designed
the way it is. Some of the features discussed, such as the load-store architecture, were
chosen from the range of existing solutions to the problem of VM design. These can also
be thought of as features which classify Mite, or Mite’s view of the “right way” to do
things. Others, such as the register stack and three-component numbers, add flexibility
to Mite’s design, and make it harder to classify precisely, moving tradeoffs out of the
hands of the VM designer and into those of the compiler writer. While the second class
of features may seem more important, and certainly contains Mite’s novel contributions
to VM design, the first contributes just as much to its usefulness. The success of a new
design often rests more on the skill with which it chooses the best elements of the state
of the art than the degree to which it innovates. Indeed, as mentioned in section 2.1,
perhaps the greatest strength of the JVM is that it contains no innovations, but is a
novel and skilful combination of existing techniques. Mite must innovate, as it attempts
to combine a range of features and abilities previously seen as mutually incompatible.
However, it nevertheless recognizes the dangers of pointless innovation, and, within
the limits set by its design goals, is as conservative as possible.

51

5 Implementation

Mite’s implementation consists of two programs: the assembler, which works like a
conventional assembler, producing object files from assembly source, and the translator,
which loads, translates and executes object files. The translator currently produces code
only for the ARM processor. To test Mite’s suitability as a compiler target, a Mite back
end was added to LCC [38], a well-documented retargetable ANSI C compiler. The
assembler and translator are literate programs. The system is available under the GNU
General Public License from http://rrt.sc3d.org/.

This chapter is organized as follows. First, section 5.1 gives a brief description of
each component; then in section 5.2 a sample translation is followed from C source
through Mite assembler to ARM code, to illustrate the translation process. Section 5.3
then discusses highly optimizing compilation for Mite, by taking the output of LCC’s
Mite back end and hand-optimizing it using the same tricks as GNU C.

This, however, only illustrates the translation of one language for one processor, and
Mite is supposed to be language and architecture-neutral. To show how Mite can be
used for other languages, section 5.4 discusses three mechanisms not found in C: static
chains, exceptions and garbage collection. In each case, several possible implementa-
tions are discussed, a few involving additions to Mite’s design.

Section 5.5 demonstrates Mite’s architecture neutrality in a similar way. Since most
current workstation architectures are RISC machines like the ARM, translation for them
is mostly straightforward. However, most other RISC processors do not have a dedi-
cated flags register, so Mite’s flags register must be treated differently. This is discussed
before turning to the more daunting prospect of translating Mite code on Intel IA-32
machines. Two of the main difficulties presented by this architecture are discussed: the
paucity of registers, along with the special purpose nature of several of them, and the
fact that its instructions are not three-operand, but two, one or even zero-operand.

5.1 Mite’s components

An overview of each component is given below; more details of key algorithms are
given in the next section.

5.1.1 Assembler

The assembler is written in ANSI C. Its only system dependency is on the word length;
this could be removed by using the new ISO C headers [55]. The module which writes
object files can be used separately, for example by a compiler which generates binary
code directly.

52

5.1 Mite’s components

Fix up

Initialize
data structures

Decode

Translate

Virtual
code

Native
code

Figure 5.1: Block structure of the Mite translator

53

5 Implementation

5.1.2 Translator

The translator is also written in ANSI C, and most of its system dependencies are iso-
lated in a single module. Its block structure is shown in figure 5.1; it is about 3,500 lines
long. It operates as follows:

1. The object file is read in, and its header’s validity is checked.

2. Based on the header, some data structures are initialized, such as the array that
holds label information.

3. The instructions are decoded and translated (these phases are combined) into a
series of native code fragments, roughly corresponding to basic blocks.

4. The code is fixed up by inserting the correct values for branch targets and address
constants; at the same time, it is concatenated into a single block of native code,
which includes literal data.

5. The native code is executed.

5.1.3 Compiler back end

The LCC back end was written using LCC’s back end generator system, lburg. This
generates the back end from a tree pattern grammar for turning LCC’s intermediate
code into assembler, and some hand-written routines that implement part of LCC’s
code generation interface for instructions that cannot be handled by lburg, such as
function call and block copies. A typical back end is about 1,000 lines, of which 150 or
so are always the same; Mite’s is less than 600, because many details that must be dealt
with by native back ends, such as calling conventions, are left to the translator.

Writing a back end for an existing compiler tested Mite’s goal of integrating well with
current compiler technology. Two other reasonable courses of action would have been
to write a custom back end, or to have used LCC as the basis for a new compiler. The
success of the approach used is analysed in sections 5.2.3 and 6.2.2.

5.1.4 Run-time system

The translator has a minimal run-time system, containing just implementations of Mite
instructions whose implementation is too long to inline each time the instruction oc-
curs. In the ARM implementation division and memory block copy routines are pro-
vided (the ARM has no divide instruction). On most architectures, probably just the
block copy would be required; on CISC machines such as the IA-32, no run-time sys-
tem would be needed.

54

5.2 A sample translation

5.1.5 Standard library access

One problem with compiling C portably is that there is no portable way of calling li-
brary routines. Some operating systems provide dynamic linking; others do not, and
where it is provided, the mechanisms differ. Mite needs dynamic linking in some form
because it translates its programs at load time, and hence also needs to link them to
system libraries at load time.

The current Mite translator uses a simple trick to provide portable access to the stan-
dard ANSI library routines (except those which may be defined as macros): it initializes
an array of pointers with the entry point of each routine, and then looks up all external
function calls (those where the label is preceded by x) in the symbol table.

With static linking, this results in the entire standard library being linked into the
translator, but with dynamic linking, this is avoided. There is no speed penalty in either
case, as the translator compiles normal function calls to the addresses stored in the
lookup table.

Another problem with compiling C portably (as with any language) is marshalling. In
general this problem must be solved by forcing libraries to present a portable interface,
whether directly, or via an interface description language. Mite ignores the problem;
indeed, for most functions on most machines, it can be avoided by assuming standard
representations (for example, char is generally a byte, int four bytes, long and pointer
types one word), but this is not good enough for fully portable code.

5.2 A sample translation

To see Mite in action, we now follow a sample translation from C to Mite code, and
then to ARM code. So that the translation process can be followed in some detail, only
a single short function is examined. It is the main() function of the wf1 benchmark (see
section 6.1), which counts the number of times each word occurs in a text file.

5.2.1 C program

The C program is as follows:

main() {

struct node *root;

char word[20];

root = 0;

next = 0;

while (getword(word))

lookup(word, &root)->count++;

tprint(root);

return 0;

}

55

5 Implementation

Here, root is the root of a binary tree, whose nodes are statically allocated, and next is
the number of the next unused node. The tree is initialized by the two assignments, and
then the main loop is entered: getword() returns the next word in the input stream, and
lookup() looks it up in the tree, installing it if it is not already there. Finally, tprint()
displays the words in frequency order.

5.2.2 Translation to Mite virtual code

The output of LCC for this program is as follows:

fvp.main

NEW return value
NEW_20 word

NEW_4 root

NEW three temporaries
NEW

NEW

MOV 5, 4 root = 0

MOV 6, #0

ST_4 6, [5]

MOV 5, .next next = 0

MOV 6, #0

ST_4 6, [5]

BAL .l3 go to test of while loop
.l2

MOV 5, 4 get address of root
NEW declare argument register
MOV 8, 5 load argument &root
MOV 5, 3 get address of word
NEW declare argument register
MOV 9, 5 load argument word
CALLF .lookup, 2, [1] call lookup
MOV 5, 8 get returned value
KILL discard returned value
LD_4 6, [5] indirect through pointer
MOV 7, #1 load 1 into temporary
ADD 6, 6, 7 increment counter
ST_4 6, [5]

.l3

MOV 5, 3 get address of word
NEW declare argument register
MOV 8, 5 load argument word
CALLF .getword, 1, [1] call getword()
MOV 5, 8 get returned value
KILL kill returned value register
MOV 6, #0 load 0 into temporary
SUB , 5, 6 test of while loop
BNE .l2 loop while true
MOV 5, 4 get &root

56

5.2 A sample translation

LD_4 5, [5]

NEW declare argument register
MOV 8, 5 load argument root
CALLF .tprint, 1, [1] call tprint()
MOV 5, 8 get returned value
KILL discard returned value register
MOV 2, #0 load return value of main()
.l1

RETF 1, [2] return from main()

KILL kill remaining stack items
KILL

KILL

KILL

KILL

KILL

KILL

In examining this translation, the focus will be mainly on the issues raised by writing
a Mite back end for LCC. Details of LCC’s workings that are not pertinent to code
generation for Mite are not elaborated.

As shown by the comments, the C program has been translated straightforwardly
into Mite code. There are several interesting features of this translation:

Function prologue The function itself starts with a label preceded by fvp. f indicates a
function label, v that the function is variadic (since it was not given a proper ANSI
declaration), and p that it is publicly visible (since it is implicitly declared extern).
Stack items are then declared: first, the return value (a register, since main() re-
turns an int), then the automatic variable. Two of these are chunks: word because
it is an array, and root because its address is taken, and Mite registers, like ordi-
nary machine registers, do not have an address. Note that the bottom-most stack
item is the return chunk, which is implicitly declared by the function label (see
section 3.2.7). It contains the return address and any callee-saved registers or other
information required by the system calling convention.

Temporaries Temporaries are declared at various places in the function, starting with
three immediately after the prologue. Because LCC does not handle variable num-
bers of registers gracefully,1 registers once declared remain live until the end of
the function, with the exception of outgoing function arguments and incoming
return values. A better approach would be to declare registers used to hold auto-
matic variables at the beginning of the block in which they are declared, and to
destroy them at the end. In this example, there is only one block, so this strategy
would not help; here, the other register allocation problems described below are
more relevant.

1Among other problems, the hooks blockbeg() and blockend(), which are run at the beginning and end
of each code block respectively, are called before the number of registers used by the block is known.

57

5 Implementation

Constants Where constants are used, as in the test of the while loop, the constant value
is always loaded into a virtual register. In a simple-minded translator, this will
generally result in a physical register being allocated to hold the constant. Mite
provides constant registers to avoid this problem, but LCC does not use them
because it has no way of distinguishing constant from variable registers.

Register targeting Since LCC’s intermediate code does not give information about the
number of arguments to a function, the Mite back end cannot use LCC’s register
targeting mechanism for function calls, because the relevant register numbers are
not known until the code has already been generated. This results in inefficient
code, as shown in the example below on the left; a better compiler might generate
the code on the right.

MOV 5, 3 get address of word
NEW declare argument register NEW

MOV 9, 5 load argument word MOV 9, 3

Return values are similarly handled inefficiently; again, the examples below show
the code actually generated on the left, and that which a more intelligent compiler
could generate on the right.

CALLF .getword, 1, [1] call getword() CALLF .getword, 1, [1]

MOV 5, 8 get returned value
KILL kill returned value register
MOV 6, #0 load 0 into temporary MOV 6, #0

SUB , 5, 6 test of while loop SUB , 8, 6

kill returned value register KILL

CALLF .tprint, 1, [1] call tprint() CALLF .tprint, 1, [1]

MOV 5, 8 get returned value
KILL discard returned value KILL

(In the second case, it might seem even better just to generate

CALLF .tprint, 1, [] call tprint()

but this would violate tprint()’s type, and might not work on some systems.)

Common sub-expression elimination LCC is rather poor at this optimization; the im-
mediate constant 0 is loaded once redundantly while initializing next near the
start of the function.

Functions and function calls While all the above points concern limitations of LCC’s
Mite back end, most of which are at least partly due to Mite’s design, there is one
respect in which the Mite back end is superior to those for other architectures:
it has far less work to do to generate code for function entry, exit and call. The
resulting virtual code is also simpler in these areas; the translator must take care
of all the fiddly details. This is a good example of reuse arising from Mite: the code
to handle functions is implemented just once, in the translator, and can be used

58

5.2 A sample translation

by any number of compiler back ends. This is especially beneficial as functions
and function calls are often one of the trickiest and most time-consuming parts of
a compiler back end to implement. Indeed, function(), which generates function
prologues and epilogues, averages 112 lines long in the native LCC back ends, but
is only 49 in Mite’s. The only native back end whose function() is less than 100
lines is that for the Intel IA32, which is only 35 lines.

5.2.3 Translation to ARM assembly

The Mite translator produces the following ARM code from the Mite code above:

.main

mov ip, sp function prologue
stmfd sp!2, {r0-r3}

stmfd sp!, {r4-r9, fp, ip, lr, pc}

sub fp, ip, #20

cmp sp, sl

bllt x.stack_check

subs sp, sp, #40 reserve stack space
adds r9, sp, #12 root = 0

mov r8, #0

str r8, [r9, #0]

adr r9, &0000031c load address of next
add r9, r9, #&0400

nop

mov r8, #0 next = 0

str r8, [r9, #0]

b .l3 go to test of while loop
.l2

adds r9, sp, #12 get address of root
movs r7, r9 load argument &root
subs sp, sp, #4 reserve spill slot for argument register
adds r9, sp, #20 get address of word
movs r6, r9 load argument word
sub sp, sp, #4 reserve spill slot for argument register
mov r1, r7 load arguments into correct registers
mov r0, r6

add sp, sp, #8 remove argument register spill slots
bl .lookup call lookup()
movs r9, r0 get returned value
ldr r8, [r9, #0] indirect through pointer
mov r7, #1 load 1 into temporary
adds r8, r8, r7 increment counter
str r8, [r9, #0]

.l3

adds r9, sp, #16 get address of word

2The ! causes the stack pointer (sp) to be updated by the store instruction, so that the instruction is
effectively a multi-register push.

59

5 Implementation

movs r6, r9 load argument word
sub sp, sp, #4 reserve spill slot for argument register
mov r0, r6 load argument into correct register
add sp, sp, #4 remove argument register spill slot
bl .getword call getword()
movs r9, r0 get returned value
mov r8, #0 load 0 into temporary
cmp r9, r8 test of while loop
bne .l3 loop while true
adds r9, sp, #12 get root
ldr r9, [r9, #0]

movs r6, r9 load argument root
sub sp, sp, #4 reserve spill slot for argument register
mov r0, r6 load argument into correct register
add sp, sp, #4 remove argument register spill slot
bl .tprint call tprint()
movs r9, r0 get returned value
mov r6, #0 load return value of main()
.l1

mov r0, r6 put return value into correct register
ldmdb fp, {r4-r9, fp, sp, pc}^3 return from main()

For clarity, labels have been inserted and branch targets turned into symbolic addresses.
The following special registers are given names: pc the program counter, lr the link
register (saved return address), sp is the stack pointer, fp the frame pointer, sl the stack
chunk limit and ip, a scratch register. The other registers are named r0 to r9 (the ARM
has sixteen registers).

By way of comparison, the ARM code generated by LCC’s ARM back end is:

.main

mov ip, sp function prologue
stmfd sp!, {v5-v6, fp, ip, lr, pc}

sub fp, ip, #4

cmp sp, sl

bllt x.stack_overflow

sub sp, sp, #24 reserve stack space
mov v6, #0 root = 0

ldr ip, [pc, #0] load constant 8 bytes ahead4

mov pc, pc branch past constant
dcd 0 constant 0
str v6, [sp, ip]

ldr v6, [pc, #0] load address of next
mov pc, pc

dcd .next constant address of next
mov v5, #0

3The ^ causes the condition flags, which are stored in the top 6 bits of pc, to be overwritten by the load,
thus preserving the flags across the function.

4pc holds the address of the current instruction plus 8 bytes.

60

5.2 A sample translation

str v5, [v6, #0] next = 0

b .l3 go to test of while loop
.l2

add a1, sp, #4 load argument word
mov a2, sp load argument &root
bl .lookup call lookup()
ldr v5, [a1, #0] indirect through pointer
add v5, v5, #1 increment counter
str v5, [a1, #0]

.l3

add a1, sp, #4 load argument word
bl .getword call getword()
cmp a1, #0 test of while loop
bne .l2 loop while true
mov v6, sp load argument root
ldr a1, [v6, #0]

bl .tprint call tprint()
mov a1, #0 load return value of main()
.l1

ldmea fp, {v5-v6, fp, sp, pc}^ return from main()

The following sections compare the two translations.

5.2.3.1 Idiosyncratic code

Most of the ARM instructions clearly correspond to Mite instructions, usually one-to-
one. Others have a less clear correspondence, or none at all; they are as follows.

The first five instructions are the function prologue, including stack checking code
(the fourth and fifth instructions) that allocates more stack space if necessary.

The adjustments of sp generally correspond to the creation and destruction of regis-
ters. Mite’s translator reserves a spill slot for each register, in the position on the stack
corresponding to the register’s number. This avoids needing a spill slot allocator, at the
cost of higher stack usage. Many compilers allocate all the stack space required by a
function at the beginning, and deallocate it at the end; in addition, they often let outgo-
ing function arguments accumulate until the present function returns, a practice known
as “stack pollution”. Mite uses the stack more conservatively, which incurs a slight time
penalty, because of the more frequent adjustments of the stack pointer, and more than
claws back the extra stack usage caused by using fixed spill slots.

Two other features of stack management are worth noting. First, Mite updates sp

lazily, waiting until its value is needed. This avoids updating it at all in leaf functions
that do not spill or use stack-allocated chunks. That is why the instructions that allocate
the spill slots for argument registers often appear after the register has been given a
value, whereas the NEW instruction declaring the register in the Mite code must appear
before the register is first used. Secondly, the spill slots for argument registers must be
removed before the function is called, so that arguments passed on the stack appear in
the right place: this is the reason for the adjustment of sp (add) just before the call (bl).

61

5 Implementation

This code could be omitted for functions which take all their arguments in registers,
but is not. Also, some function calls, such as that to getword(), cause code that updates
sp to be generated needlessly: sp is updated before the arguments are moved into the
correct registers, in case any argument needs to be loaded from or stored to the stack.

5.2.3.2 Physical register usage

Unfortunately, rather more physical registers are used than is strictly necessary, and
quantities such as argument and return values are often copied more than they need
be. This is partly due to the lack of virtual register targeting in the LCC back end, which
was discussed in section 5.2.2. The rest, such as the copying of arguments into the cor-
rect physical registers before each function call, is due to Mite’s lack of physical register
targeting: the virtual code has no way of signalling to the translator that a particular
quantity is a function argument. There is also a lot of physical register spilling, reload-
ing and shuffling at branches; this is explained further in section 5.2.3.5. A change to
the design to allow physical register targeting is discussed in section 7.1.1.3.

Any implementation of Mite also has to deal with register allocation issues specific
to the host machine. These tend to centre on the calling convention, which dictates both
how registers are used within a function, and how they must be arranged at the instant
of procedure call and return. Most ARM-based operating systems use the ARM Pro-
cedure Call Standard [9]. This allocates the first four registers as procedure arguments;
any that are not used for arguments may be used freely by the callee, and they are there-
fore caller-saved. The next six registers are callee-saved, and therefore generally used
as register variables. The remaining six registers are reserved by the calling convention,
as described in section 5.2.3.

Since Mite has no register typing, the translator uses the first ten registers without
distinguishing register variables from temporaries, but to avoid excessive saving and
restoring around calls the registers are allocated in order from highest to lowest, so that
the register variables are used before the argument registers.5 The translator tries to
reload spilled values into the registers they occupied before the call, so that at the end
of loops the virtual registers tend to be held in the same registers as at the start, and
little shuffling is required before the branch back to the start (see section 5.2.3.5). Apart
from this, there are few optimizations. The translator avoids the expense of counting
how many registers each function uses, and thus saves all the callee-saved registers in
every function (see sections 5.3.3.2 and 6.2.3.2).

Function calls leave little room for manoeuvre: the arguments must be moved into
the correct registers, any unused argument registers that are currently in use must be
spilled, then the call is made. On return the first argument register holds the return
value. This interacts well with the translator’s trying to reload values into the register
they last occupied, as the first argument register is the last to be allocated, and is hence
rarely used.

5The test results in figures 6.4 and 6.2 which are discussed in sections 6.1.7 show that most of the time it
is better to use the caller-saved registers, as the generated code tends to be both quicker and smaller.

62

5.2 A sample translation

5.2.3.3 Immediate constants

As discussed in section 5.2.2, LCC’s Mite back end does not use constant registers,
which means that the translator does not use immediate constants. For example, the
example in section 5.2.2 contained the Mite code shown below on the left, for which the
translator emitted the code on the right:

MOV 7, #1 define constant 1 mov r7, #1

ADD 6, 6, 7 increment counter adds r8, r8, r7

If LCC’s Mite back end used constant registers, it could generate the following Mite
code, whose ARM translation saves a physical register and an instruction:

DEF 7, #1 define constant 1
ADD 6, 6, 7 increment counter adds r8, r8, #1

5.2.3.4 Address constants

Address constants are tricky to deal with on the ARM, which lacks absolute address-
ing and does not have an load effective address instruction. Compilers tend to store
address constants in literal pools, which can be placed between functions and indexed
with PC-relative addressing (relative address offsets may be up to 4Kb). For simplicity
and speed of translation, the translator turns addresses into immediate constants. On
the ARM, these have eight significant bits, so it takes up to four instructions to load an
arbitrary 32-bit constant. Since the addresses of labels are not known until code gener-
ation is complete, the maximum number of instruction slots must always be reserved,
and padded with no-ops (see section 6.2.3.2). The ARM translator restricts immediate
addresses to 24-bit offsets from the program counter, a reasonable limit. This means that
it must allow three instructions for each address load. This explains the nop instruction
in the code above.

The elimination of no-ops is discussed in section 6.2.3.

5.2.3.5 Register allocation and spilling

One important aspect of the translator has been only tangentially dealt with: the mech-
anisms for register allocation and spilling. There are three points of particular interest:
spilling, register bindings around branches, and dealing with registers at calls. Since
the first two are not well illustrated by the example used above (in particular, there is
no spilling there), a different code fragment is used, from the fft benchmark program.
Register bindings at calls were covered in section 5.2.3.2.

The C program is shown below. The Mite code under consideration does not corre-
spond exactly to a contiguous fragment of C, so the extract below is rather schematic.
LCC compiles the test of while and for loops after the body of the loop; the Mite code
goes from the test at the end of the first for loop below up to part way through the
second loop, as shown.

63

5 Implementation

{

...

for (i = 0; i < n-1; i++) {

...

}

}

for (s = 1; s <= ln; s++) {

int m = 1<<s;

int m2 = m>>1;

...

}

The Mite code produced by LCC for this program is shown below on the left, and the
ARM code it translates to on the right:

SUB , 11, 14 comparison of for loop cmp r6, r3

ldrlt r2, [sp, #128]

BLT .l19 blt &00000274

spill r1 str r1, [fp, #8]

MOV 7, #1 initialize s mov r1, #1

REBIND reorganize registers to str r0, [sp, #120]

match the virtual-to-physical str r7, [sp, #72]

register binding at the end str r8, [sp, #64]

of the loop str r9, [sp, #56]

str r6, [sp, #52]

str r4, [sp, #48]

str r5, [sp, #44]

mov r0, r1

mov r1, r3

mov r3, r2

BAL .l31 branch to the loop test b &000005d8

.l28

spill r0 str r0, [fp, #4]

MOV 20, #1 m = 1<<s mov r0, #1

spill r7 str r7, [sp, #72]

SL 16, 20, 7 movs r7, r0, lsl r1

MOV 20, #1 m2 = m>>1 mov r0, #1

SRA 14, 16, 20 movs r3, r7, asr r0

At first sight the ARM code appears to contain a large number of register moves and
stores which have no counterpart in the Mite code. It turns out that they arise from the
points mentioned above. The two stores (str) near the end of the native code are spills
of r0 and r7. The translator generates spill code at the point in the code where the regis-
ter is needed again, rather than trying to find a better position for the code. This is only
sub-optimal if the spill is in the middle of a loop, and could have been moved outside
the loop; that case is partly handled by the REBIND directive (see section 4.3.1.3). The
series of seven stores and three moves near the start of the ARM code are caused by a
REBIND directive rearranging the registers before the second for loop. The second in-
struction, ldrlt, is a conditional load. It is caused by the following conditional branch,
which goes back to the beginning of the first for loop. During the loop the register r2

64

5.3 Optimizing compilation

is spilled, but it is held in a register at the beginning of the loop, so it must be reloaded
before the branch.

5.2.4 Summary

There is a straightforward correspondence between the native ARM code produced
by LCC’s ARM back end and that emitted by Mite’s ARM translator. Most of the dif-
ferences arise from the treatment of registers, and in particular, in the register shuffling
code generated by Mite for spilling, and at branches and function calls. Virtual registers
are also the source of most difficulties with the LCC Mite back end, such as the inability
to perform physical register targeting or to use constant registers. These problems are
discussed further in section 6.2.2.

5.3 Optimizing compilation

While the translation above demonstrates that Mite produces a reasonable approxima-
tion to LCC’s native back end, it is not yet clear that it would do as good a job on the
output of a heavily optimizing compiler, compared with that compiler’s native code
generator. In this section, the gradual optimization of Mite’s translation of one of the
benchmark programs used in chapter 6 is used to show the sort of Mite code an opti-
mizing compiler might produce.

The optimizations were applied by hand in two stages: first, the optimizations that
LCC makes when generating ARM code, to show that very similar code can be ob-
tained from Mite. Secondly, some of GNU C’s more aggressive optimizations were ap-
plied to give dramatically better code; the result is compared with the code produced
by GNU C’s native ARM back end. The quantitative results of the optimizations are
discussed in section 6.1.

5.3.1 Test program

The test program used to demonstrate Mite’s potential for optimizing compilation
is fft, a fast-Fourier transform program, adapted from a BCPL program by Martin
Richards. It was designed to be a good test of register allocation: most of the code
resides in two functions, which contain nested loops and many local variables. Sec-
tion D.1 gives a listing of the program.

The performance of the various forms of the program are shown in figure 6.1, and
discussed in section 6.1.2. fft-1 is the original program, fft-3 has the LCC-style opti-
mizations added, and fft-7 has GNU C-style optimizations added. fft-6 is the same
as fft-7, but without virtual register rankings.

65

5 Implementation

5.3.2 LCC-style optimization

The first set of optimizations was mostly restricted to those which LCC makes in its
ARM back end (as noted above, and discussed further in section 6.2.2, LCC’s ARM back
end is able to make some optimizations that LCC’s Mite back end cannot), namely:

Redundant move elimination Move instructions that move a register to itself were re-
moved; LCC’s Mite back end is forced to generate some such instructions after
the optimization phase that removes them.

Constant register use Constants were put in constant registers, just as the LCC’s ARM
back end puts constants in immediate operand fields.

Precompute manifests Manifest constants were computed by the compiler. LCC relies
on the assembler to do this, which Mite’s assembler cannot.

Register targeting Function argument and result registers were targeted directly as
in LCC’s ARM back end, rather than using intermediate temporary registers, as
LCC’s Mite back end does.

Shorter live ranges for temporaries The live ranges of temporaries were reduced to
the length of the statement in which each was created, rather than lasting from
the point of creation to the end of the function.

Added REBINDs A REBIND instruction was added just before each loop. This causes the
virtual to physical register binding to be brought in line with the ranks, thus po-
tentially avoiding register spilling inside the loop (see section 4.3.1.3).

The resulting improvements in the virtual and native code are shown by the follow-
ing fragment, in which the left-hand column is the original code, and the right-hand
column the hand-optimized version:

create constant register NEW

MOV 4, #1 constant 1 DEF 3, #1

create result register NEW

MOV 5, .ln load ln MOV 4, .ln

LD_4 5, [5] LD_4 4, [4]

SL 5, 4, 5 (1<<ln) SL 4, 3, 4

SUB 4, 5, 4 (1<<ln) - 1 SUB 4, 4, 3

MOV 4, 4 (redundant move)
MOV 5, #2 constant 2 DEF 3, #2

SL 4, 4, 5 ((1<<ln) - 1) << 2 SL 4, 4, 3

NEW

MOV 6, 4 load argument of malloc
CALLF x.malloc, 1, [1] call malloc CALLF x.malloc, 1, [1]

MOV 4, 6 get return value
KILL

66

5.3 Optimizing compilation

The corresponding native code translations are:

mov r9, #1 constant 1
adr r8, &00000000 load ln adr r9, &00000000

nop nop

nop nop

ldr r8, [r8, #0] ldr r9, [r9, #0]

constant 1 mov r8, #1

movs r8, r9, lsl r8 (1<<ln) movs r9, r8, lsl r9

subs r9, r8, r9 (1<<ln) - 1 subs r9, r9, r8

movs r9, r9 (redundant move)
mov r8, #2 constant 2
movs r9, r9, lsl r8 ((1<<ln) - 1) << 2 movs r9, r9, lsl #2

make spill slots for NEWed registers sub sp, sp, #8

movs r7, r9 load argument of malloc
sub sp, sp, #4 reserve spill slot for argument
mov r0, r7 copy argument into its register mov r0, r9

add sp, sp, #4 get rid of spill slot add sp, sp, #4

bl x.malloc call malloc bl x.malloc

movs r9, r0 copy return value

Notice that the redundant MOV has disappeared, so that the corresponding ARM mov has
also gone; the constant 2 now appears as an immediate constant, while 1 is still loaded
into a register, as the left-hand operand of a shift cannot be immediate on the ARM.
The unnecessary intermediate register used to hold malloc’s parameter and result is
no longer present, resulting in shorter, faster code. Finally, the temporary constant 1
has a shorter live range than before. In the event, it does not affect the efficiency of the
generated code, but it could well have done if there had been more demand for registers
at that point in the program.

5.3.3 GNU C-style optimization

The second set of optimizations was much more pervasive and thorough. The ARM as-
sembly code produced by GNU C at its highest optimization level (-O3) was examined,
and its structure applied to the Mite virtual code. This ranged from low-level optimiza-
tions such as more efficient register use to higher-level code transformations such as
moving invariants out of loops and inlining short functions. Additionally, the registers
were ranked according to a simple algorithm that GNU C could easily use: inside each
block, register variables used in that block were given the highest rank. After discussing
some successful optimizations and how they were made possible by Mite’s design in
section 5.3.3.1, some of the GNU C optimizations that could not be expressed in Mite
are examined in section 5.3.3.2.

5.3.3.1 Hits

Many common compiler optimizations can be expressed directly in Mite code, and the
optimizations carry through as expected to native code. This section shows some ex-
amples of how optimizing the virtual code resulted in optimized native code.

67

5 Implementation

The function add was inlined. The body of the function before was

ADD 5, 2, 1 add the arguments
MOV 7, #65537 compare result with 65,537
SUB , 5, 7

BGE .l9 if greater, go to l9

MOV 6, 5 copy result into return value
BAL .l10 branch to exit
.l9

MOV 7, #65537 subtract 65,537 from result
SUB 6, 5, 7

.l10

MOV 4, 6 copy return value into the correct register

A typical inlined call is shown below on the left, with its translation on the right.

NEW

DEF 5, #1

SL 4, 4, 5 (add optimized into a shift) movs r9, r9, lsl#1

NEW create result register
NEW create constant register
DEF 6, #65537 constant 65,537 mov r8, #1

orr r8, r8, #65536

SUB 5, 4, 6 result −65, 537 subs r7, r9, r8

KILL kill the constant register
BLT .l51 if sum less than 65,537, finish sublt sp, sp, #4

blt .l51

MOV 4, 5 otherwise load result −65, 537 movs r9, r7

reserve space on stack sub sp, sp, #4

.l51

This compares with GNU C’s

mov r2, r5, lsl#1 (add optimized into a shift)
sub ip, r2, #1 result −65, 537
sub ip, ip, #65536

cmp r2, #65536 if sum less than 65,537, load sum
movle r5, r2

movgt r5, ip otherwise load new result

Another stretch of code was originally

MOV 14, #2 constant 2
SL 14, 10, 14 make count into address offset
ADD 14, 14, 3 add offset to base address
LD_4 13, [14] load contents of address plus offset
MOV 14, #2 constant 2
SL 15, 10, 14 make count into address offset
ADD 15, 15, 3 add base address to offset
SL 14, 11, 14 make count into address offset
ADD 14, 14, 3 add base address to offset
LD_4 14, [14] transfer first quantity
ST_4 14, [15]

68

5.3 Optimizing compilation

MOV 14, #2 constant 2
SL 14, 11, 14 make count into address offset
ADD 14, 14, 3 add base address to offset
ST_4 13, [14] transfer second quantity

This was transformed into the following Mite code (again, shown with its ARM trans-
lation):

DEF 16, #2 constant 2
SL 12, 8, 16 make count into address offset movs r3, r7, lsl #2

reserve spill slots for new registers sub sp, sp, #20

spill r2 str r2, [fp, #12]

SL 13, 9, 16 make count into address offset movs r2, r6, lsl #2

KILL constant no longer needed
reserve spill slot for constant register add sp, sp, #4

spill r1 str r1, [fp, #8]

LD_4 14, [3, 12] load first quantity ldr r1, [r0, r3]

spill r8 str r8, [sp, #36]

LD_4 15, [3, 13] load second quantity ldr r8, [r0, r2]

ST_4 14, [3, 13] store first quantity str r1, [r0, r2]

ST_4 15, [3, 12] store second quantity str r8, [r0, r3]

Note that there are far fewer actual instructions in the optimized version, which con-
tains a lot of stack directives. This compares with GNU C’s

ldr r2, [sp, #0] load addresses
ldr r0, [sp, #0]

ldr ip, [r2, r4, lsl #2] transfer quantities
ldr r2, [r2, lr, lsl #2]

str ip, [r0, lr, lsl #2]

str r2, [r0, r4, lsl #2]

There is little point in giving other examples; by now it should be clear that Mite’s
success stems from its similarity to real processors: the optimizations that GNU C ap-
plies to ARM code can be applied in exactly the same way to Mite code. This does
not by itself vindicate Mite’s approach; it is this ease of optimization combined with
the performance figures (see section 6.1.2), which demonstrates that these optimiza-
tions are sufficient to give good performance. It is possible that low-level machine-
dependent optimizations such as those discussed in the next section are also sufficient
to give good performance. Such optimizations can be implemented in the translator,
and hence used with all compilers. Using code transforming optimizations has the op-
posite advantages, that they are implemented in the compiler, so do not slow translation
down, and are applicable to all machines.

5.3.3.2 Misses

Some of the optimizations made by GNU C cannot easily be imitated by the transla-
tor, at least not quickly, owing to limitations of Mite’s design. Such optimizations can

69

5 Implementation

be divided into two classes: machine-specific optimizations and those of more general
applicability.

The first class represents Mite’s tradeoff between simplicity and universality: accom-
modating such machine-specific features would generally come at the expense of mak-
ing Mite more complex or less machine-neutral. In the case of the ARM, the most ob-
vious examples are conditional execution and multiple register load and store. Condi-
tional execution is used in GNU C’s version of the inlined add function in section 5.3.3.1,
where both possible results are calculated, and only one of the last two instructions is
executed to move the result into the result register. Multiple register load and store are
mostly used for function entry and exit, where Mite uses them too, but GNU C also uses
them for spill and restore code, as well as a way of combining memory transfers. This
requires peephole analysis which Mite currently does not do, because it is slow (but
see section 5.5.2.1). Optimal use of multiple loads and stores requires interaction with
register assignment, since registers are transferred to and from memory in numeric or-
der (the lowest numbered register corresponds to the lowest address, and so on), which
would slow the translator down.

The most important examples of the second class are physical register targeting and
function entry and exit sequence optimization. The former has already been discussed
in section 5.2.2, and changes to Mite’s design to accommodate it are discussed in sec-
tion 7.1.1.3. There is already limited support for the latter in the form of leaf routines,
but other measures, such as saving only those callee-saved registers that are actually
used, would require Mite do to more work at translate time (see section 5.2.3.2). So-
phisticated methods such as moving the entry sequence inside a top-level conditional
are probably out of Mite’s reach.

5.4 Other languages

Rather than sketching the translation of whole languages, it seems more sensible to
treat the implementation of a few key mechanisms in detail. The mechanisms chosen
are static chains, often used to implement Modula-like languages that allow nested
procedure definitions; exceptions as found in C, Java and ML; and garbage collection,
which is required by almost all modern languages.

5.4.1 Static chains

Languages such as the Modula family and ML allow procedure definitions to be nested,
and lexical scoping means that variables declared in one procedure are visible in nested
procedures. This means that such variables must be accessible even when they are not
in the current stack frame. Two common methods used to implement this are static
chains, where a pointer in each stack frame points to the suspended frame of the lex-
ically enclosing procedure, if any, and displays, where each stack frame contains a
pointer to each of the lexically enclosing procedures. Since displays are simply a way

70

5.4 Other languages

Static chain
pointer

Variables

Static chain
pointer

Variables

Frame 1

Frame 2

Figure 5.2: Static chaining

of flattening the static chain, their implementation is just a variation on that of static
chains, and need not be elaborated separately.

The mechanism of static chains is illustrated in figure 5.2. Each stack frame contains
some variables which must be accessible via the static chain from inner procedures.
These are stored in a block which starts with a static chain pointer, which points to the
corresponding block in the next innermost procedure. Each time a procedure is called,
a pointer to the current variable block is passed as an implicit argument, and becomes
the value of the new static chain pointer. Now, a variable in an outer stack frame can
be accessed by following the static chain back to the procedure to which it is local, and
then indexing off the static chain pointer in that procedure.

Two implementations of static chains are discussed. The first (section 5.4.1.1) is a
little awkward, but requires no changes to Mite’s design to implement portably. The
second (section 5.4.1.2), which involves walking the stack directly, is simpler and lighter
weight, but cannot be implemented portably in the current model.

71

5 Implementation

5.4.1.1 Putting variables in a chunk

A simple solution, which can be implemented portably in the current model, is to place
the variables to be accessed via the static chain in a chunk. A chunk large enough to
hold all the variables is declared, and they are stored at fixed offsets. The first word of
the chunk is used to hold the static chain pointer, and the chunk’s address is passed
to inner procedures. The layout of the chunk is independent of whether the system
stack happens to be ascending or descending. However, some overhead is incurred: the
variables are not directly accessible, but must be loaded into virtual registers and stored
back when they change, which is a potential waste of space and time; for example, vari-
ables which are passed as parameters to the procedure must be stored into the chunk
as part of the entry sequence. This means that the virtual register mechanism of Mite
must effectively be duplicated manually for variables that are to be accessible via the
static chain. A partial solution to this problem is proposed in section 7.1.1.4.

5.4.1.2 Walking the stack

It would be better if virtual registers could be used directly for variables to be accessed
via the static chain, but this requires a way to find the value of a virtual register in an
outer procedure. Mite’s design denies access to virtual registers in outer procedures
for efficiency reasons; is it possible to allow such access without it imposing overheads
where it is not needed?

One way to enable this is to allow stack frames to be navigated directly. This breaks
down into four requirements. First, the stack layout must be fixed. Secondly, it must be
possible to find the start of a stack frame. Thirdly, the stack direction must be known.
Fourthly, it must be possible to ensure that when a function call is made, any variables
in the current procedure whose values are accessible via the static chain are up to date.
Otherwise, under a callee-saves convention, a variable whose value is held in a register
just before a call may have its current value saved in the callee’s stack frame; mean-
while, the value accessible via the static chain is out of date.

The stack walking mechanism introduced in section 7.1.2 solves all these problems.
The stack layout is fixed by requiring all virtual registers to have a stack slot, allocated
in order of register number. The register FP, which points to the start of the current
stack frame, is made visible in the assembly language. Manifest constants are extended
to allow them to be multiplied by the stack direction. Finally, SYNC is extended to allow
the registers to be SYNCed to be specified, so that variable values can be saved before a
call without requiring all registers to be flushed.

Section 7.1.2 discusses the modest implementation effort that would be required and,
along with section 5.4.3.3, some other benefits that would accrue from its introduction.

5.4.2 Exceptions

Most languages have non-local exits, or exceptions, but the details of how they work
vary widely. In C, only a simple value can be passed by an exception. In Java and ML

72

5.4 Other languages

exceptions can pass values of arbitrary type. Each requires a different implementation,
but all can be built in terms of Mite’s CATCH and THROW instructions.

5.4.2.1 C style exceptions

Although C has already been implemented on Mite, the implementation of exceptions
has not been discussed, and it is worth comparing it with the others. C uses the setjmp

and longjmp macros to implement non-local return. Since these macros vary from sys-
tem to system, they cannot be used in portable code. The current ARM translator ig-
nores the issue, as setjmp and longjmp are simply function calls on the system on which
it runs, and are hence accessed just like any other standard C library routine (see sec-
tion 5.1.5).

This approach is compatible with natively compiled code, but is not portable: it only
works on systems where setjmp and longjmp are true functions. A portable mecha-
nism can be built quite simply with CATCH and THROW, although it is hard to see how
an implementation could be both portable and interwork with natively compiled code
efficiently.

A call to setjmp is translated as follows:

register 1 will contain the result of setjmp
register 2 contains the address of the jmp_buf

NEW scratch register
NEW constant
DEF 4, #0+1 one-word offset
CATCH 3, .handler

ST_a 3, [2] store the address in the jmp_buf

MOV 2, .handler get the address of the handler
ST_a 3, [2, 4] store the handler address in the jmp_buf

KILL kill registers that are no longer needed
KILL

KILL the top stack item is now register 1
MOV 1, #0 set result of setjmp to 0
h.handler the point reached by longjmp

When control reaches .handler, register 1 contains either 0, if the code was entered
at the top, or the longjmp value, if the handler was reached by a THROW instruction
(which overwrites the top-most stack item with the throw value). The call to longjmp is
implemented as:

register 1 contains the address of the jmp_buf

register 2 contains the return value
NEW register to hold the stack state
NEW constant
DEF 4, #0+1 one-word offset
LD_a 3, [1] get stack state
LD_a 1, [1, 4] get handler address
THROW 1, 3, 2 perform the THROW

This causes the handler to be reached with the given return value.

73

5 Implementation

There is a further subtlety: to ensure that the stack state is consistent when a longjmp

is executed, all CALLs and THROWs in a function that calls setjmp must be followed by
SYNC .handler.

5.4.2.2 Java style exceptions

Exceptions in Java work as follows: a code block guarded by try can raise an exception,
which is an object whose type is a sub-class of Exception. A try block is followed by
a number of catch blocks, each of which has an associated exception type. The first
whose type is a super-class of that of the exception object is executed. After the catch

blocks there may be a finally block, which is always executed, whether the try block
terminates normally, or with a return or break, or by an exception. This applies even
if a further exception is raised in one of the catch blocks. Exceptions may be raised
anywhere by throw, which is given the exception object. This is often created at the
same time:

throw new MyExceptionClass("we made a booboo");

is a common idiom.
Since user-supplied exception classes can add extra instance variables and methods,

exceptions are naturally value-passing.
As exceptions have a special syntax in Java, the implementation is more straight-

forward than that for C. The try block starts with a CATCH, and all method calls and
throws inside it are SYNCed. The first catch block is preceded by a handler label, whose
address is used as the current innermost handler. When an exception is thrown to this
handler, it determines which catch block to run, according to the type of the exception,
and then branches to it. Each catch block ends with a branch to the end of the last such
block, where the finally block occurs, if any. If no suitable exception value is found,
the exception must be re-thrown to the next innermost handler.

Any returns, breaks or continues within the try block must also cause the finally

block to be run before the appropriate action is performed. Thus it might be best to
translate the finally block as a subroutine, or alternatively to pass it a continuation
address. Since an exception may be raised inside a catch block, an extra handler must
be installed for the duration of the catch blocks, which causes the finally block to be
executed before the exception is re-raised.

The addresses of handlers can be passed to THROW sites in a number of ways. The
currently active handler could be passed as an implicit parameter to every method call,
or the handler chain could be kept as a linked list on the stack. It would also be possible
to have a separate handler stack. Most methods used by compiler writers are applicable
to Mite.

Note that although Mite’s THROW instruction only allows a single register to be passed,
rather than the compound values allowed in Java, no run-time penalty is incurred, since
the value, being an arbitrary Java object, must in any case be allocated on the heap, so
the exception value is naturally just a pointer to the exception object.

74

5.4 Other languages

5.4.2.3 ML style exceptions

In ML, an exception is simply an exceptional value. Exceptions are datatype construc-
tors, and may thus pass arbitrary data. An exception e is raised with raise e. An ex-
ception causes immediate termination of expression evaluation, and the value of the
expression is the exception value. Exceptions thus propagate outwards like any other
result, except that they prevent any further evaluation.

An exception handler is a guard on an expression of the form

E handle P1 => E1 |. . .| Pn => En

where E is the guarded expression, the Pi are patterns whose top-level constructor is
an exception, and the Ei are expressions. There is no equivalent of finally in ML.

When an exception value is propagated into an expression that has a handler, the
exception value is matched against each clause in the handler; if a match is found, the
corresponding handler expression is evaluated, and its value becomes the value of the
expression. Otherwise, the exception value becomes the value of the whole expression,
just as if there were no handler.

The implementation is similar to the Java case. Since exceptions are propagated until
they reach a handler, intervening unguarded expressions can be ignored, and excep-
tions can be THROWn straight to the next innermost handler, just as in Java. When a
handler is reached, the exception is dispatched by ML pattern matching rather than
according to the Java class hierarchy, but this does not affect the implementation per se.

Unlike the Java case, since ML exceptions need not be constructed on the heap, there
is a potential speed penalty in having to place them there, rather than simply treating
them as return values. On the other hand, if an exception has to be propagated through
several handlers before being handled, it may well be quicker to allocate space for it on
the heap than have to copy it between stack frames once for each handler.

5.4.3 Garbage collection

Most modern languages have automatic memory management, and this generally
means having a garbage collector. There are two main types of garbage collection:
tracing collection, which periodically scans data structures to discover garbage, and
reference counting, which acts at each pointer update, and frees storage immediately
it is no longer in use by the program. Garbage collectors may also be categorized as
conservative, meaning that they do not have a precise idea of the layout of memory,
and must occasionally leave garbage uncollected, or accurate, meaning that all garbage
is collected. [58] is a thorough guide to the field.

5.4.3.1 Reference counting

Reference counting requires full support from the compiler (and sometimes the pro-
grammer), as it affects every pointer update; this has the advantage that it can be im-
plemented entirely portably, and is no harder to implement on Mite than on any other
system.

75

5 Implementation

5.4.3.2 Conservative

Conservative garbage collectors such as the Boehm–Dehmers–Weiser collector [15] are
generally used for languages that do not explicitly support garbage collection, such as
C and FORTRAN. They make more or less weak assumptions about the contents of
memory and machine registers and in case of doubt must leave garbage uncollected.
Hence, using such a collector with Mite is straightforward: provided that calls to the
garbage collector are SYNCed, so that the contents of all virtual registers are available
on the stack, the usual heuristics can be used to find garbage by scanning the stack and
heap.

Less conservative collection, which requires more accurate information about the lay-
out of the stack, would be made possible by the techniques used for accurate tracing
that are discussed in the next section.

5.4.3.3 Accurate tracing

Accurate tracing collection is sometimes not merely desirable, but necessary to avoid
serious space leaks, for example in functional languages implemented by graph rewrit-
ing, such as Haskell [94] and KRC [133]. In order to work, the collector needs to know
what every value on the stack and in registers is. In Mite terms, this reduces to knowing
what every item on the virtual stack is, and where it is. The compiler obviously knows
what each virtual stack item contains, but the garbage collector cannot, under Mite’s
current design, know where they are stored.

The changes to Mite’s design proposed in section 7.1.2 fix the stack layout, with one
exception, and allow garbage collectors to traverse the stack. The one part of the stack
whose layout is not fixed is the return chunk, whose format is system-dependent. This
may contain callee-saved registers, which may hold the values of virtual registers be-
longing to the caller. Although they have stack slots in the caller’s stack frame, the
values held there may not have been up to date when the call was made, so the correct
value is now only available in the return chunk, whose format is unknown.

This problem can be overcome by SYNCing all calls. Then, all virtual registers’ current
values are accessible via the stack walking mechanism, and the return chunks can be
ignored. However, as discussed in section 7.1.2, SYNCing all calls is inefficient. Hence,
selective SYNC is introduced, which allows only those virtual registers containing values
that might be of interest to the garbage collector to be SYNCed.

This still leaves some inefficiency, and does not permit the use of such common tricks
as finding the stack layout of the caller by looking at the return address. These and
other subtleties of supporting garbage collection have been examined by the designers
of C-- [93]. To be as efficient as C--, Mite would need to allow the return chunk to be
deciphered; this adds considerable extra complexity, though it also goes a long way
towards supporting even more facilities, such as multi-threading. Whether it is neces-
sary to make these further extensions to achieve a reasonable level of performance, or
whether the changes suggested so far would suffice, remains to be seen.

76

5.5 Other target processors

5.5 Other target processors

Implementing Mite on processors other than the ARM introduces a new range of prob-
lems. Here, some of them are considered to show that Mite is indeed implementable on
a wide range of processors. First, a problem typical of other RISC machines is investi-
gated: that many do not possess a dedicated condition codes register. Secondly, some
of the difficulties thrown up by the most problematic common architecture, the Intel
IA-32, are discussed.

5.5.1 Flags without a dedicated register

Some RISC architectures, such as the Alpha and MIPS, do not have a dedicated flags
register, and conditional branches take one or two register operands: either a single
register which is compared with zero, or two registers which are compared with each
other. On such architectures, the translator must take the instruction before a condi-
tional branch into account when generating the branch. If it is a comparison instruction,
that is, it has no destination register, it may be possible to emit a single compare-and-
branch instruction; for example, the Mite code on the left could generate the MIPS code
on the right:

SUB , 2, 3 beq $8, $9, .smaller

BEQ .smaller

Otherwise, the result of the operation must be examined by the conditional branch,
as the MIPS has no “compare and branch on less than” instruction. In this case, the
translation might look like this (the MIPS register $0 always has the value zero):

SUB , 2, 3 set $7 if $8 < $9 slt $7, $8, $9

BLT .smaller branch if comparison was true bne $7, $0, .smaller

In some cases, it may be necessary to generate rather more code than for the ARM, for
example, when implementing a BVS (branch on overflow set) instruction on the MIPS:

ADD 4, 2, 3 get carry bit in $10 add $7, $8, $9

lsr $11, $7, #31

and $11, $11, $10

BVS .overflow bne $10, $0, .overflow

Such instructions are rare, however, and must sometimes already be synthesized by na-
tive code compilers, as in this case. Similarly, the Alpha has no built-in carry detection,
so carry after an add must be detected by performing an unsigned comparison of the
result with each operand to see if it is less than either.

Finally, note that machines which lack a flags register are helped by Mite’s prohibi-
tion on chained conditional branches (see section 4.3.2).

5.5.2 Targeting the IA-32

The Intel IA-32 architecture is probably the hardest common architecture on which to
implement Mite. It throws up many problems; just two of the most important will be

77

5 Implementation

considered here: register allocation, and implementing three-operand instructions us-
ing two-operand instructions.

When generating code for the IA-32 it is worth remembering that the difficulty of
code generation is compensated for to a certain extent by the intelligence of the hard-
ware; most IA-32 processors perform many basic block optimizations in hardware, so
that what appears prima facie to be terribly naïve code will often execute reasonably
well.

5.5.2.1 Register allocation

Register allocation is difficult on the IA-32 architecture because it has only six general-
purpose registers; in addition, each of these registers has a special purpose for certain
instructions. Many IA-32 instructions can have memory operands and destinations, so
it may sometimes be better to access a virtual register directly on the stack (as a constant
offset from the stack pointer) rather than load it into a physical register. Mite’s translator
has no time to analyse the code deeply in order to determine when to allocate virtual
registers to physical registers, and when to access them on the stack, so heuristics must
be used. For example, a virtual register could be accessed directly on the stack if its
rank is outside the range 1–6. It might also be sensible to spill the physical registers in
a fixed order rather than according to rank, spilling first those registers which are most
frequently needed for their special-purpose operations.

One example of an operation which uses fixed registers is division, which uses eax

and edx to hold a double-length dividend (the dividend must be double-length); the
same registers hold the quotient and remainder. Another is shift by a variable amount,
which uses cl (the low byte of ecx) to hold the shift amount.

Division on the IA-32 will in practice be no worse than on RISC machines that lack
hardware division, such as the ARM, where division is implemented as a subroutine,
and hence uses fixed registers for the operands and results.

The converse operation, namely assigning virtual registers to the physical registers
they must occupy, is harder: for example, if a virtual register is first used as the desti-
nation of an add, then the divisor of a div, the translator must scan ahead to find the
second virtual instruction before it can know that assigning the virtual register to edx

is a good idea. This effectively involves peephole optimization of virtual code.

It may be better simply to have a peephole post-pass on the native code, as men-
tioned in section 1.2.2, and discussed in sections 5.3.3.2 and 6.2.3.2. This would have
two particular benefits on the IA-32, over and above the benefits of peephole optimiza-
tion on a RISC machine. First, it could locally improve register allocation, and secondly,
it could take advantage of the rich instruction set and addressing modes, for example
combining scaling a load offset with the load instruction:

DEF 3, ashift scaling constant
SL 2, 2, 3 shift the offset
LD_a 1, [1, 2] load with word offset mov eax, [eax+4*ecx]

78

5.6 Summary

5.5.2.2 Three-operand instructions

Most of Mite’s instructions have three operands, but with a few exceptions, such as
multiplication by a constant, the IA-32 instruction set is two-operand, and sometimes
fewer, when one or both operands are in fixed registers. Three-operand instructions
must be synthesized by first moving one of the operand registers to the destination
register, then performing the operation using the destination register and other operand
register:

copy left-hand operand mov eax, ecx

ADD 1, 2, 3 perform addition add eax, edx

When the destination is the same as the left-hand operand, it may not be necessary
to generate an extra mov; this case can easily be spotted by the translator. Compilers can
easily be made to generate instructions with the destination the same as the left-hand
operand wherever possible. The opportunity arises quite frequently, as operands are
often discarded after being read, and operand registers can then be reused for results.

5.6 Summary

This chapter has shown in detail the workings of the LCC back end for Mite, demon-
strating that it produces reasonable code relative to the native ARM back end. It was
then shown that several optimizations applied by a more aggressive compiler, GNU C,
could also be applied to Mite code. Then, the implementation of key features of some
other languages was discussed. These can all be accommodated within the present de-
sign, but could be supported more simply and efficiently by a mechanism for stack
frame traversal that would be both simple and cheap to implement. Finally, some ap-
parent difficulties in translating Mite for other architectures than the ARM were inves-
tigated; in particular, it was shown how Mite could be translated effectively for the Intel
IA-32.

It seems that, from a design point of view, Mite is sufficiently flexible to allow both
fast translation and good native code across a wide range of languages and machines.
The next chapter tests Mite more practically, by examining its quantitative performance
in a series of benchmarks.

79

6 Assessment

This chapter assesses Mite’s performance in two ways. First, in section 6.1, a series of
tests run on the ARM implementation of Mite is described, and the results are analysed.
Next, section 6.2 evaluates the implementation in the light of the results; then, sec-
tion 6.3 evaluates the design in the light of both, considering how well it has performed
and what compromises have been made. The findings are summarized in section 6.4.

6.1 Tests

The test machine was an Acorn RISC PC with a 200MHz StrongARM processor and
16MHz system bus running Acorn RISC OS 3.7.

Three sets of tests were run: some hand-written assembler programs, to test the cor-
rectness of the assembler and translator, some of LCC’s test suite, to test that the C back
end and translator were working, and some benchmark programs. The tests discussed
here are drawn from the last two sets. As well as being run on Mite, they were com-
piled natively for the ARM with LCC1 and GNU C [35]. Since LCC was also used to
produce the Mite code, its native back end was the main point of comparison. The re-
sults of GNU C, which was used with full standard optimizations (-O2), were intended
mainly as an indication of the maximum performance that could be expected from the
test platform; LCC performs few optimizations, so its code, whether native or for Mite,
cannot be expected to compete with GNU C’s.2 As a broad measure of comparison, and
to indicate the absolute speed of the test platform, the Dhrystone 2.1 benchmark [138]
was also run, giving the results in table 6.1. To provide a comparison with more famil-
iar hardware, the benchmark was also run on a IBM PC compatible with a 150MHz
Pentium processor running Red Hat Linux 6.2.

The tests are as follows. switch, wf1 and 14q are from the LCC test suite (respectively
a switch statement test, a word frequency counter and a 14-queens solver). stan is the
Stanford Integer Benchmarks [47], which are implemented as a single program. fft-1
to fft-7 are versions of the fft benchmark, an integer fast Fourier transform (see sec-
tion D.1), whose Mite translations have been successively hand-optimized, as discussed

1It is unfortunate that I wrote LCC’s ARM back end, doubly so because the combination of peculiarities
of the ARM architecture and deficiencies in LCC’s code generation interface and the assembler used
meant that code quality was not as good as might have been hoped. Nonetheless, correspondence with
the author of another ARM back end [115] and with the compiler’s authors indicated that my back end
was reasonable under the circumstances.

2Section 5.3 considered how well a Mite back end for an optimizing compiler such as GNU C would
perform.

80

6.1 Tests

System Speed/VAX MIPS Relative to Mite

GNU C 100 1·81
GNU C -O 187 3·40
GNU C -O2 191 3·47
GNU C -O3 195 3·54
LCC ARM 69 1·25
LCC Mite 55 1·00
150 MHz IBM PC (GNU C -O2) 200 3·64

Table 6.1: Dhrystone 2.1 results

in section 5.3.1. pyram and pyr-bad comprise an artificial test of register allocation. The
results of fft-3, fft-6, fft-7 and pyr-bad are excluded from quoted averages.

The next section explains the principles by which the measurements were made and
the figures that summarize the results were drawn. Next, the various sets of measure-
ments are explained, and the results are analysed. In each case a reasonable expecta-
tion is compared with what actually happened. Where performance was worse than
expected, the reasons are investigated and remedies discussed.

6.1.1 Measurements

All timings were obtained with the computer running just the test process (other than
interrupt-driven tasks), and each test was performed several times consecutively to
minimize differences between runs due to caching and buffering. The timing resolution
was 0.01s; the translation times in figure 6.6 were obtained by performing the transla-
tion fifty times in a row and dividing by fifty. The measurement data collected from the
tests are shown in appendix E.

Relative rather than absolute figures are used for the most part, to concentrate at-
tention on the relative performance of Mite, LCC and GNU C. Absolute measurements
often seem to exercise a seductive fascination far beyond their importance: witness the
current craze for marketing processors purely on the strength of their clock speed. Mite
must be taken in context, and its success judged according to how well it performs rela-
tive to its established competitors. Any intuitive advantage that concrete data may have
is quickly eroded by rapid advances in the size and speed of hardware, so that grasp-
ing absolute performance measurements even a year after they were taken requires a
mental effort to remember what typical systems were like at the time. Note that where
averages are quoted for relative measurements, they are geometric means [34].

6.1.2 Execution speed

The similarity of Mite’s machine model to a real processor suggests that a compiler
should be able to generate Mite code similar to the native code it generates for other

81

6 Assessment

0.0

0.5

1.0

1.5

2.0

2.5

Mite/GNU C
Mite/LCC

switch wf1 14q stan fft-1 fft-3 fft-6 fft-7 pyrampyr-bad

Figure 6.1: Relative execution speed

3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

55

switch
wf1
14q
stan
fft-1
fft-7
pyram
pyr-bad

% speed increase

Figure 6.2: Variation in running time with number of physical registers

82

6.1 Tests

platforms. This is certainly borne out by comparing the ARM and Mite code gener-
ated by LCC for the examples in chapter 5. As Mite’s translator naïvely maps Mite
instructions to native instructions, the resulting native code should also be similar to
that generated directly by a compiler’s native back end. Hence, the execution speed of
Mite’s native code should be about the same as that of LCC’s. On the other hand, Mite’s
looser coupling to the machine, combined with its insistence on rapid translation, could
mean that it ends up a little slower. What is an acceptable slow-down? Mite is aiming
for performance comparable to that of native compiled code, so it must not be too great;
10–20% seems a reasonable figure. If the slowdown were much bigger than that, use of
Mite versus ordinary compilation would turn into a serious tradeoff; on the other hand,
for mid-range CPU speeds,3 a 20% faster processor costs only a few percent more.

Figure 6.1 shows the relative execution speed of each program. The total time taken to
load and run each program was measured; in the case of Mite, this included loading the
translator and translating the program into native code. Figure 6.2 shows the running
time of Mite’s code for each test when the number of physical registers available to the
translator was artificially restricted, from a minimum of 3, which, on the ARM, is the
fewest registers it can work with, up to a maximum of 10. Note that only the time taken
to run the test was measured; translation and loading time was excluded.

From figure 6.1 it transpires that, on average, Mite’s code runs 21% slower than
LCC’s. However, in the switch and wf1 benchmarks, translation takes a large propor-
tion of the total execution time (see figure 6.6). If these tests are neglected, along with
the artificial boost to Mite given by pyram, the mean slow-down is 13%, well within the
acceptable range. The Dhrystone benchmark runs 20% slower on Mite than the native
LCC version; this is also just within the acceptable range.

Whether the slow-down in switch and wf1 is important is largely a matter of per-
spective. If they are considered to be interactively-run user commands, then the overall
running time is so short that doubling it hardly matters. If on the other hand they are
taken to be frequently-run system processes, then the native code version should prob-
ably be cached in any case; as can be seen from figure 6.6, this would nearly double
their speed, bringing them back in line with the desired performance.

It is also interesting to note the effect of the optimization directives. fft-1 and fft-7

were timed with and without REBIND. There was no measurable difference, possibly
because there were no loops in which substantial spill code was being generated in
any case. Alternatively, the register shuffling required at the end of loops in order to
match the virtual to physical register binding in effect at the start of the loop may have
outweighed the effect of spills. RANK on the other hand turned out to have a slight effect:
fft-7, which is just fft-6 with ranking added, ran 0.7% faster than fft-6.

To see the full potential of ranking, the pyram test was written; its source code is
given in section D.2. It consists of a series of assignments which gradually involve more
and more variables, hence the name, a contraction of “pyramid”. The idea is that there
should be too many variables to hold in physical registers; furthermore, the variables
nearer the start of the alphabet are used much more frequently, and so should be given

3Say, 400–500MHz at the time of writing.

83

6 Assessment

higher priority during register assignment. The alternating use of addition and sub-
traction, coupled with the initial assignment of random values to the variables, aims to
prevent a cunning compiler from generating trivial code. pyram is an optimally ranked
version of the test, and pyr-bad a pessimally ranked version. The results are dramatic:
not only does pyram run much faster, but its performance increases much more than
pyr-bad’s as the number of physical registers is increased (see figure 6.2). The same
effect applied to the amount of code produced (see figure 6.4).

Overall, Mite’s execution speed is acceptable. The program that gives most cause for
concern is 14q: it is long-running, and the Mite version runs 25% slower than LCC’s na-
tive version. This is mostly due to a large number of register spills around function calls
caused by LCC’s lack of virtual register targeting (see section 6.2.2), as 14q has a high
proportion of function calls. fft-3, which has this optimization added by hand, and
runs as fast as LCC’s ARM version of fft, suggests that adding virtual register target-
ing to LCC’s Mite back end would nullify this effect. The prospects for the performance
of an optimizing back end targeting Mite were discussed in section 5.3.

This, though, is not the end of the story. While Mite’s performance relative to LCC
is reasonable, it must be remembered that LCC is not a heavily optimizing compiler. It
is far easier for a portable system to be competitive with a relatively straightforward
native compiler than with a highly optimizing code generator such as GNU C’s. For-
tunately, figure 6.1 shows that the optimized version of the program discussed in sec-
tion 5.3, fft-7, runs almost exactly as fast as fft compiled by GNU C -O2. This is only
one benchmark, and it was hand-optimized (though in a mechanical way, as explained
in sections 5.3.2 and 5.3.3). Nevertheless, it is an indication that Mite’s virtual code can
indeed benefit from conventional optimizing compilation to much the same degree as
native code.

Finally, it should be remembered that the benchmarks are all compute-intensive;
most real-world applications contain a far higher degree of I/O, which will tend to
reduce the difference between Mite and its competitors.

6.1.3 Code size

By the argument used in the previous section, the size of Mite’s native code should be
about the same as that of LCC’s, quite probably slightly greater. Bloat of 10–20% over
natively compiled code seems reasonable: memory is cheap, and at any rate, this sort of
figure is no worse than the cost incurred by moving from a typical imperative language,
such as C, to an object-oriented or functional language, such as Java or ML.

Figure 6.3 shows the relative size of the native code produced for each test. The
counts exclude out-of-line data, and those for Mite are shown with and without no-
op instructions (see section 6.1.3). The counts for Mite were obtained by instrument-
ing the translator, and those for LCC and GNU C by hand-counting the number of in-
structions in the assembler output. Run-time routines, start-up code and the like were
not counted, to make the comparison between the code generators more accurate. Fig-
ure 6.4 shows the size of the native code obtained by Mite for each test when the number
of physical registers was varied as in section 6.1.2.

84

6.1 Tests

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Mite/GNU C
Mite/LCC
Mite−nops/LCC

switch wf1 14q stan fft-1 fft-3 fft-6 fft-7 pyrampyr-bad

Figure 6.3: Relative code size

3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

switch
wf1
14q
stan
fft-1
fft-7
pyram
pyr-bad

% reduction

Figure 6.4: Variation in code size with number of physical registers

85

6 Assessment

0.0

0.5

1.0

1.5

Mite/GNU C
Mite/LCC

switch wf1 14q stan fft-1 fft-3 fft-6 fft-7 pyrampyr-bad

Figure 6.5: Relative executable file size

Figure 6.3 shows that, on average, Mite produces 25% more native code than LCC.
In the worst case, switch, Mite produces over twice as much code as LCC’s native back
end; if this test is neglected, the average is 12%.

While the average increase is acceptable, it is worth seeing how it could be improved,
especially in the worst case. There are four main reasons for the bloat. First, LCC’s Mite
back end does not use constant registers, so immediate constants are never used in the
native code (see section 6.2.2); this means that constants must always be loaded into a
register, which takes an extra instruction, and may incur spills. Secondly, the translator
takes up to three instructions to load the address of a label, but since it does not know
the address until after code generation, it has to leave space for the instructions and
patch them afterwards; the final code must be padded with no-ops (see section 6.2.3).
Thirdly, Mite’s lack of physical register targeting (see section 6.3) causes excess register
shuffling around branches and calls. Finally, as above, the lack of virtual register target-
ing in LCC’s back end (see section 6.2.2) causes unnecessary virtual register traffic.

Optimization directives have little effect on code size: REBIND made fft-7 1.0% big-
ger, while the code for fft-1 remained identical in size when REBIND directives were
added. The RANKed fft-7 produced 3.6% less native code than fft-6, which has no
rankings.4

4This does not agree with the figures in appendix E, because there fft-6 has the add function compiled
in even though all calls to it are inlined; it is removed from fft-7, and for a fair comparison should also
be removed from fft-6.

86

6.1 Tests

6.1.4 Executable size

As for the native code, it seems reasonable to expect the virtual binaries to be about
the same size as the native binaries. Figure 6.5 shows the relative size of the executable
files for each test. In Mite’s case this is simply the object file output by the compiler,
which is loaded and translated by the translator. It includes optimization directives.
For the other two compilers, it is the size of the program executable, which includes
start-up code and some run-time routines, though not library code, as the executables
are dynamically linked.

In fact, Mite’s virtual binaries are much smaller: on average, they are only 65% of
the size of LCC’s native executables. Since most of the tests are less than 2Kb long, this
might be thought to be caused by the standard initialization code present in each LCC
binary (a minimal “hello world” program is about 500 bytes long), but even if 500 bytes
is subtracted from each of LCC’s binaries, Mite’s are still 19% shorter on average.

It is also interesting to see how much optimization directives add to the size of a pro-
gram: fft-7 is 5.5% longer than the same program without the optimization directives.

Mite’s virtual code density is therefore perfectly acceptable. Were greater compact-
ness required, there are several options available. First, the encoding has some room
for improvement: successive NEWs and KILLs, of which there are often several in a row,
could be combined, and it could be made possible for register numbers to occupy less
than a byte. Secondly, a general-purpose compression algorithm could be used to com-
press the files on disk; decompression algorithms exist that have a tiny fixed space
overhead, and decompress data faster than it can be read from disk [86]. Finally, a com-
pression scheme such as SSD [71] could be used, as discussed in section 4.4. However,
none of these measures is urgently needed.

6.1.5 Translation speed

Mite is designed to translate virtual code rapidly into native code, though not as rapidly
as a system like VCODE that does not need to decode a virtual binary before generating
code. It should generate code fast enough that it does not add significantly to program
execution time; this effectively means that it should not significantly reduce execution
speed, which was discussed in section 6.1.2. However, for interactive use the transla-
tor must also start running the program quickly enough not to annoy the user, so the
program’s start-up time must not noticeably be increased. Without going deeply into
psychology, the following rule of thumb seems reasonable: allow 0.1s for programs up
to 10Kb, 1s for programs up to 100Kb, and so on. Few programs are larger than 10Mb,
which this logarithmic rule allows 3s.

Figure 6.6 gives a breakdown of the time Mite took to perform each test into trans-
lation time and run time; loading time is ignored. Figure 6.9 shows the time taken to
translate each test when the number of physical registers was varied as in section 6.1.2.

It turns out from figure 6.6 that Mite generates about 270Kb/s of native code on aver-
age, and that code generation speed is roughly linear in the size of the program. For all
but the largest applications this is an insignificant addition to startup time. Figure 6.9

87

6 Assessment

0.001

0.01

0.1

1

10

100

Translation
Run

switch wf1 14q stan fft-1 fft-3 fft-6 fft-7 pyrampyr-bad

time/s

Figure 6.6: Translation versus running time

3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10
11
12
13

switch
wf1
14q
stan
fft-1
fft-7
pyram
pyr-bad

% reduction

Figure 6.7: Variation in memory consumption with number of physical registers

88

6.1 Tests

Memory allocated

Code+data generated

memory/bytes

105

104

10
3

switch wf1 14q stan fft-1 fft-3 fft-6 fft-7 pyrampyr-bad

Figure 6.8: Memory consumption of the translator

shows further that translation time does not vary greatly with the number of physical
registers. Indeed, profiling the translator (as discussed in section 6.2.3.1) suggests that
the number of physical registers is irrelevant: what counts is the amount of code gen-
erated. As can be seen from figure 6.4, using more registers tends to reduce code size;
thus, the translator tends to run faster when it has more registers are available.

By way of comparison, the test machine loads from hard disk into memory at a rate of
about 1Mb/s, or about 3.7 times the rate of translation. Given that Mite’s virtual bina-
ries are generally about 65% the size of the generated native code, this makes starting a
program with Mite about 6.1 times slower than simply loading it from disk (neglecting
the time taken to load the translator). This figure would be rather lower when load-
ing from other media, or downloading code over a network, where latencies are typi-
cally much higher; it could also be reduced by compressing the virtual code on disk, as
suggested in the previous section, using a decompression algorithm that is faster than
reading from disk.

6.1.6 Memory consumption

Low memory consumption is not an explicit goal of Mite; nevertheless, it should stay
within reasonable bounds. So that Mite can remain memory-resident in a system when
it is used frequently, static memory usage should be low, say less than 0.5Mb. Peak
memory consumption during translation might reasonably reach 1Mb.

Figure 6.8 shows the amount of memory dynamically allocated by the Mite trans-
lator while translating each benchmark, compared with the memory required by the
final code image (including static data, unlike the counts of generated native code in

89

6 Assessment

3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

switch
wf1
14q
stan
fft-1
fft-7
pyram
pyr-bad

% speed increase

Figure 6.9: Variation in translation time with number of physical registers

figure 6.3). Measured memory consumption excludes memory allocated internally by
the malloc system. Figure 6.7 shows the translator’s memory consumption for each test
when the number of physical registers was varied as in section 6.1.2.

In fact, static memory consumption is modest: the translator uses about 80Kb for the
program, static data, C heap and stack. Peak dynamic memory usage on the other hand,
as shown in figure 6.8, varies roughly linearly with code size, and averages about 12
times the size of the program produced. This may seem excessive, but it is largely due to
easily removed inefficiencies in the design of the translator. First, although Mite’s trans-
lator performs no inter-function optimizations, each module is translated as a whole.
Secondly, the code is generated as a series of fragments which are later concatenated to
form the binary image; these fragments are of fixed size, and many are partly unused.
Changes discussed in sections 6.2.3 and 7.1.6 would greatly reduce peak memory con-
sumption by generating almost all code in-place and translating one function at a time.
This would limit total peak memory consumption to well under 100Kb except for pro-
grams with pathologically large functions (perhaps produced by compilers that output
C).

6.1.7 Usage of physical registers

Figures 6.2 and 6.4 show how execution time and code size vary when the number of
physical registers available to the translator is artificially limited. The translator makes
good use of extra registers on the whole, as both execution time and code size are almost
always reduced by increasing the number of registers available. As already noted in the
case of the pyram and pyr-bad test in section 6.1.2, the effect can be dramatic.

90

6.2 Evaluation of the implementation

There is an exception to this: some benchmarks perform best with about 7 registers,
or experience a performance dip in the range 6–8 registers before climbing again. This is
most noticeable in the 14q benchmark, for which both the best performance and small-
est code is obtained with 7 registers.

This strange result is an artefact caused by the lack of virtual register typing. The
ARM calling convention allows ten registers for general use (hence the maximum num-
ber), of which six are callee-saved and four caller-saved. The translator uses callee-
saved registers in preference, as they are saved efficiently on entry to a function with
a single multiple register store instruction, whereas caller-saved registers must be in-
dividually saved and restored around each call. When the translator is not allowed to
use more than six registers, it uses only callee-saved registers, and hence never has to
save caller-saved registers around calls. When more registers are added, this becomes a
possibility, and if the caller-saved registers happen to be heavily used, a large amount
of spill code may result.

If the virtual registers were typed, as suggested in section 7.1.1.2, this would be less of
a problem, as the compiler would be able to specify whether virtual registers are short-
lived or long-lived, and hence whether they should be mapped to callee-saved physi-
cal registers or caller-saved physical registers. In addition, as discussed in sections 5.2.2
and 5.2.3.2, physical and virtual register targeting would alleviate the problem by re-
ducing the number of physical registers used, and the number of inter-register moves.
A way to add targeting is outlined in section 7.1.1.3.

6.2 Evaluation of the implementation

This section evaluates the implementation of Mite in the light of the test results. The
three parts of Mite are discussed successively: the assembler in section 6.2.1, the LCC
back end in section 6.2.2, and the translator in section 6.2.3.

6.2.1 Assembler

There is little to say about the assembler, as the demands on it are slight. It is required
to assemble correct code, and extensive checks both inside it and in the translator en-
sured that this was so. Its performance is of little importance, as it is used only during
compilation. In any case, it assembles each of the tests in less than a second.

The only problem experienced with the assembler was its lack of an expression eval-
uator: when writing LCC back ends it is often convenient to insert constant expressions
in the generated assembler code. Strictly speaking, this is a failing of the assembler
syntax, or of the compiler, according to one’s point of view. In either case, it would be
straightforward to remedy.

91

6 Assessment

6.2.2 LCC back end

Although LCC’s Mite back end is simpler than the native back ends, there are several
problems with it, as discovered in section 5.2, and a few changes had to be made to the
machine-independent part of the compiler to make it work at all.

The major difficulties were as follows:

Register live range Ideally, each virtual register should be created when the value it
holds becomes live, and destroyed when it ceases to be live (or, since registers
must be destroyed in stack order, as soon afterwards as possible). Unfortunately,
LCC’s back end generator does not provide hooks to do this easily. Hence, the
back end waits until the end of each function to kill registers. This lack of control
leads to greater run-time stack space usage, and many unnecessary loads and
stores of physical registers whose contents are dead.

Register targeting Although LCC supports register targeting, it could not be used for
Mite, because the register numbers to be targeted for function parameters and
return values are not known when the appropriate back end routine is called. The
lack of targeting causes many extra virtual registers to be declared, and many
pointless register move instructions, as discussed in section 5.2.2. A solution is
discussed in section 7.1.1.3.

Ranking LCC provides no register ranking information, as it has an extremely simple
spiller. Support for ranking really requires a more heavily optimizing compiler,
such as GNU C, as discussed in section 4.3.1.2.

Number of registers LCC allows as many machine registers as bits in an unsigned inte-
ger, typically 32. This has not so far been a problem for the Mite back end, as LCC
does not allocate registers aggressively, and none of the tests needed more than
32 registers. However, since one register is allocated for each automatic variable,
this limit could easily be exceeded.

Immediate constants LCC has no notion of constant registers. Without them, the Mite
translator cannot use immediate constants, and small constants take an extra reg-
ister and instruction to load.

Fixed-size types LCC requires the sizes of all types to be fixed, so cannot easily cope
with variable-sized registers. The code generated by the current back end assumes
a 32-bit machine word. A 64-bit back end could be obtained by merely altering the
type sizes, but to produce fully portable code would require variable-sized types
to be added to LCC. In fairness to LCC, this is likely to be a problem with any
compiler, as discussed in section 4.1.3. Also, obtaining portable binaries from C
programs is problematic; this is discussed further below.

extern objects LCC does not note (or in some cases, know) whether a particular ob-
ject is defined in the current source file or not. Mite demands that references to

92

6.2 Evaluation of the implementation

labels in the current object module are local. The LCC back end therefore assumes
that a given object is defined outside the current module if it is declared extern.
Problems occur mostly with old-style functions which are used before they are
defined; this was solved in the tests by declaring each function at the beginning
of the C source file. To support all standard C programs would require LCC to
obtain this information.

Overall the back end was easy to write, despite the trickery required to make it work:
Mite’s close resemblance to a conventional processor made it a straightforward target.
In retrospect it was perhaps unwise to use LCC’s back end generator; a custom version
of LCC would have been better, generating code that fully exploited Mite. However,
using the back end generator made the task easier. In the end, no version of LCC can
hope to exploit Mite fully. The advantages of using GNU C to target Mite are discussed
in section 7.2.4.

C itself is problematic, irrespective of the compiler: Mite has the same problems as
ANDF (see section 2.4) with differences such as the size of types on different machines,
as discussed in section 5.1.5. For Mite they are harder to solve, as the virtual code is so
low-level. C is simply not a good choice of language for binary-portable code; however,
it can still benefit from Mite’s other advantages on a single machine architecture.

6.2.3 Translator

The two most important criteria by which the translator should be judged are speed
of translation and quality of the generated code. Speed of translation, along with the
subsidiary concern of memory consumption, is discussed in the next section, and the
quality of the generated code in the following section.

6.2.3.1 Speed and memory consumption

In section 6.1.5 the translator was judged to be fast enough for all but the largest appli-
cations. The only other reason to require faster translation would be for dynamic code
generation, as discussed in section 7.1.6. VCODE, which is designed for dynamic code
generation, executes on average about 10 machine instructions per generated instruc-
tion [29], which on the test platform equates to about 10Mb of code per second, assum-
ing sustained performance of 100 MIPS. This is roughly 35 times more code per second
than Mite. A rough hand-count of the number of instructions Mite needs to generate
a single machine instruction gives about 200 instructions in the optimal case, a similar
ratio of 20 : 1. As mentioned in section 6.1.5, an important reason for this is that Mite
has to decode the virtual binary before generating code; nevertheless, it could take a
leaf from VCODE’s book, and use macros for code generation rather than functions; this
would speed up code generation by inlining many of the code generation functions in
the translator.

93

6 Assessment

Profiling the translator shows that there are three main bottlenecks:

Decoding virtual instructions The main loop of the virtual binary decoder is an ineffi-
cient multiple conditional statement. In addition, some instructions are decoded
in two or three stages, being dispatched to the final code generation routine by
intermediary functions. This structure made the translator easier to write, and to
modify as the design evolved, but is inefficient; a simple 256-way switch based
on the opcode of the current instruction (each opcode occupies a byte) would be
much faster.

Emitting code As it is generated, the code is emitted into small 32-byte malloced
chunks, which are held in a linked list. A new chunk is started after each branch
and before each label, and at any other place where register shuffling code may
need to be inserted after code generation. The resultant mallocing of many small
blocks wastes both memory and time. By emitting code into a single block, this
overhead could be removed. The block could be large enough for the majority of
functions, and would only need to be enlarged for exceptionally large functions.
This also requires code generation to be performed on a per-function basis. This
was already seen to be a good idea in section 6.1.6, and is part of the list of
suggested changes to the translator in section 7.1.6.

Producing the final image The final code image is produced by copying the code frag-
ments into a single memory block, at the same time generating fix-up code as de-
scribed in section 5.1.2. Generating the code into a single block in the first place,
as suggested above, would leave the same amount of code to be copied into the
final image, but vastly reduce the number of blocks, and hence the administrative
overhead.

These shortcomings are peripheral, however, and do not detract from the translator’s
good performance.

6.2.3.2 Quality of the generated code

Section 6.1 judged the quality of the native code generated by Mite’s translator to be ad-
equate. It is interesting to see how much the code quality is dependent on the translator;
after all, Mite aims to make code quality dependent on the compiler, not the translator
(see section 1.2.2).

It turns out that there is very little more the translator could do without consider-
ably greater effort, which would make it slower, contrary to another of Mite’s goals.
Compared with GNU C, Mite’s native code output has the following shortcomings:

No-ops The ARM translator loads address constants using one to three immediate
move instructions. The number of instructions needed is not known until the la-
bels have been generated. Rather than repeatedly adjust the number of instruc-
tions used and then the label addresses, with the attendant possibility of non-
termination, the translator simply reserves three instruction slots during code

94

6.2 Evaluation of the implementation

generation, and any unused slots are padded with no-ops. This has little effect
on execution speed, but increased the code size by 4% on average. It is hard to
see how to improve code size without affecting speed of translation, other than
by adding an optional post-pass to compress the native code, perhaps as part of a
peephole optimiser, as discussed in section 5.5.2.1.

Incomplete use of instruction set As discussed in section 5.3.3.2, GNU C makes better
use of the ARM’s instruction set than Mite. In particular, it uses the ARM’s ability
to execute any instruction conditionally on the contents of the flags, which of-
ten helps to avoid short compare-and-branch sequences; it uses multiple-register
loads and stores for spilling and reloading; it makes good use of instructions that
Mite does not possess, such as the ability to combine shifts and arithmetic oper-
ations; and it uses addressing modes that Mite lacks, such load and store with
write-back to the index, which allows an increment to be added to the base reg-
ister as part of a load or store instruction. A peephole optimiser, as discussed in
section 5.5.2.1, suffices to make all these optimizations (as it does in GNU C); it is
hard to see how they could be made without one.

Conservative callee saving In every function except leaf functions, Mite saves all the
callee-saved registers on the stack. GNU C saves only those that were used. Mite’s
translator could do the same, but currently does not, owing to a design flaw cen-
tred on the fact that it does not model the ARM’s frame pointer in the machine-
independent part of the translator. If the proposals of section 7.1.2 were adopted,
Mite would have a virtual frame pointer which the translator would have to
model, and this problem would disappear.

Excessive stack pointer updates The Mite translator updates the stack pointer every
time a register is created or destroyed, rather than claiming all the space required
by a function at the start, as LCC and GNU C do. This leads to Mite making more
parsimonious use of stack space, but at the expense of frequent updates to the
stack pointer, even though they are combined into a single instruction where pos-
sible. In retrospect, this is probably a mistake, although to prevent the translator
having to scan the virtual code for a function to calculate its maximum stack us-
age before translating it, it would be worth storing this information at the start of
each function, as suggested in section 4.6.

None of these shortcomings is disastrous for Mite. The last two can be easily recti-
fied, and it is hard to see how the first two could be improved without peephole op-
timization, which would significantly decrease Mite’s translation speed. In any case,
the higher level optimizations that can already be expressed in Mite code, such as con-
stant folding, loop invariant removal and inlining, are generally more significant for
performance than these micro-optimizations, as demonstrated by the increase in speed
obtained in section 5.3 during the optimization of the fft benchmark, which brought
Mite’s performance close to GNU C’s without peepholing.

95

6 Assessment

On the positive side, Mite is able to do about as well as GNU C in its use of imme-
diate fields, both in arithmetic instructions, and loads and stores. These optimizations
are performed solely on a per-instruction basis, and hence are easy to implement in
Mite’s simple-minded translator. Also, Mite optimizes register shuffling code to use the
minimum number of loads and stores.

Hence it seems that the quality of Mite’s native code is not critically dependent on
its translator (provided that it is implemented sensibly!). There is nothing particularly
clever about the current translator, yet it generates good native code when given good
virtual code. Indeed, because of Mite’s insistence on fast translation, there cannot be
anything too clever about the translator. Hence the quality of its output is less a vindi-
cation of the translator’s implementation than of Mite’s design, which is what the next
section goes on to consider.

6.3 Evaluation of the design

Mite’s design is fundamentally sound: most of the problems with its implementation
and performance have been traced to the translator or the LCC back end, as discussed
in the previous two sections. However, it is still valuable to weigh the design carefully
in the light of experience, and this section does so from three angles. First, the ease of
implementation is discussed: the best design in the world is useless if it is too hard
to implement. Secondly, the importance of Mite’s more innovative features is consid-
ered: the considerable effort that went into their conception and implementation will
have been worth little if they did not repay that investment by improving Mite’s per-
formance. Finally, the design compromises that were due to conflicts between Mite’s
goals are examined, along with ways of solving the weaknesses that they introduce.

6.3.1 Implementability

There are two sorts of implementability to consider: first, how easy the design was to
implement; and secondly, how easy it was to map on to the target architecture.

Mite was straightforward to implement. The only algorithm of any complexity was
that required to deal with register shuffling, and it was complex principally in order to
avoid needing temporary storage (other than a single physical register) while moving
the values of virtual registers around. Other parts of the translator that dealt with reg-
isters and their ranks, such as the physical register spiller, also proved tricky, but were
in fact less complicated than the equivalent code in many compiler back ends. Finally,
implementing function call and return was tedious and error prone, but again, this is a
common problem when writing compiler back ends.

The ARM posed few difficulties as a target for Mite. The greatest annoyance was
the lack of two-byte load and store instructions. Other oddities included the special
code needed to implement shifts of 32 places when the shift amount was specified by
an immediate constant, and the fact that the multiplication instruction’s destination
register must be different from its first operand register.

96

6.3 Evaluation of the design

Over two-thirds of the code in the translator (2,500 lines out of 3,500) is machine-
independent, and could be reused when targeting another architecture (although see
section 7.1.6). The routines that deal with register rebinding, while not completely
portable, could be reused with slight adaptations; only the functions that perform
instruction selection would have to be rewritten from scratch.

In summary, Mite’s design, though novel in some respects, presented few challenges
to the implementor. Difficulty of implementation is not an obstacle to Mite’s adoption.

6.3.2 Importance of innovative features

To see how important Mite’s more innovative features are, it suffices to imagine what
would happen without each of them in turn. Most of the relevant points have already
been discussed; this section draws them together briefly, with references to the earlier,
fuller discussions.

Stack Mite’s stack is most important to the efficacy of its design. Section 4.2.2 explained
how it unifies the unlimited-size register file, registers’ live ranges, the system
stack, function calling and stack allocation. Without this unification Mite’s design
would have been much more complex, and since the complexity of the translator
is directly related to the complexity of the design, this would have made the trans-
lator much harder to write. Most importantly, separating the register file from the
system stack and doing without the stack discipline of register creation and de-
struction would have made register spilling and live range management much
harder for the translator (see section 4.3.1.1), and led to either less efficient code,
or a more complex, and hence slower, translator. Finally, the changes to Mite’s
design proposed in section 7.1.2, which provide stack frame traversal, which is
required for efficient accurate garbage collection, and would also be required for
concurrency and debugging, require the virtual register file to be integrated with
the stack.

Constant registers Without constant registers, code generators would have to move
all immediate values into registers in order to use them. This would cause much
more register usage, as discussed in section 5.2.2. Section 5.2.3.3 demonstrates
the savings possible when constant registers are used; while the same benefits
could be achieved by allowing instructions such as ADD and SUB to take a constant
operand, other problems would then arise, as discussed in section 4.2.5.

Register ranking The importance of ranking was discussed in section 4.3.1.2, with an
explanation of how it can be used by an optimizing compiler. The difference
in performance between pyram and pyr-bad (see section 6.1.2), shows its value
clearly; the same effect is also shown there in the difference between fft-6 and
fft-7. Without ranks, Mite’s native code would simply not be able to run as fast.

Three-component numbers The importance of three-component numbers for the gen-
eration of portable code was discussed in section 4.1.3. Without them machine-
dependent offsets, such as those dependent on the size of pointers, would have

97

6 Assessment

to be calculated at run time. This would add considerable overhead to access-
ing pointer arrays, such as the branch tables often used to implement C’s switch
statement. An extra shift would be required for every access to a pointer array,
and the size of the shift would have to be held in a register, since it would only
be known at run time. More complex data structures could require an extra two
shifts and two adds (to calculate a full three-component number dynamically).
The only alternative would be to generate non-portable code (or never to use ad-
dresses!).

6.3.3 Design compromises

Given the degree to which Mite’s goals conflict, according to conventional wisdom,
surprisingly little compromise between them was necessary. Nevertheless, compromise
was inevitable, and there was enormous tension at times, with different goals pulling in
different directions. Below, the main compromises are listed, and the conflicting goals
that caused them are discussed.

Lack of support for modern languages The twin goals of a low-level VM model and
portable virtual code militated against support for some mechanisms required by
modern languages. Lazy functional languages tend to allocate large amounts of
memory, and so need accurate garbage collection. As discussed in section 5.4.3,
providing this is possible, but to do so efficiently would require some changes
to Mite’s design. Other features that would require changes to support efficiently
include full continuations (with environment passing) and light-weight concur-
rency. However, the experience of C-- [92, 93] shows that it is extremely difficult
to reconcile efficiency and portability for these mechanisms.

Limited optimization directives The optimization directives (see section 3.2.10) are
rather simple and limited in scope. This is largely because the low-level instruc-
tion set is directly optimizable; at the same time, however, the loss of information
such as types means that some optimizations used in higher level systems like
ANDF and Juice cannot be expressed in Mite. Also, to keep the translator fast,
there are no optimization directives that would require substantial translate-time
effort to implement. Some further directives that would not increase translation
time greatly are proposed in sections 7.1.1.3, 7.1.1.2 and 7.2.3.

Stack order creation and destruction of registers As mentioned in section 4.3.1.1, in
order to keep the translator fast, registers are created and destroyed in stack order;
therefore, registers’ live ranges must be nested, even when the live ranges of the
values they hold are not. It might be worth allowing out of order KILLs in order
to get better native code.

No explicit 64-bit quantity support In order to have efficient portable support for ex-
plicit 64-bit quantities, it would be be necessary to have 64-bit virtual registers.
This would be a heavy burden on the register allocator of translators for 32-bit

98

6.3 Evaluation of the design

systems, so was omitted. As observed in section 4.2.4, 64-bit quantities are rarely
required in practice.

Statically sized chunks As mentioned in section 4.2.2, chunks must have a statically
determined size to keep translation fast. Since variable-sized stack allocation is
generally just used as a low-overhead alternative to allocation in the heap, this is
not a serious problem.

High level features The combination of requiring portable virtual code, good quality
native code, and a fast translator led to conflict with the ideal of a low-level VM
model in several instances. Non-local return had to be handled by CATCH and
THROW; special versions of labels and call and return instructions were required
for implementing and calling C-style functions; it was necessary to make virtual
registers variable width (see section 3.1.1), which led directly to three-component
numbers (see section 4.1.3); and an unlimited number of registers was required
(see section 4.2.1). Most of these features tend to make more work for the trans-
lator, but on the other hand, they simplify code generation for Mite, with the
exception of variable-width registers and three-component numbers, which are
awkward for compilers to handle.

Lack of support for faulting Mite has no support for signalling exception conditions
such as page faults or division by zero. It is hard to see how to handle them
portably,5 and easier for portable compiled code to check for errors, as this can
be achieved with a normal compare and conditional branch, and requires no spe-
cial semantics. Mite’s THROW instruction can also be used to deal with exceptional
conditions.

Overall, then, it seems that the hardest combination of goals to meet was that of
retaining fast translation and good native code quality; this is unsurprising, as they are,
in general, diametrically opposed.

One cause of compromise not yet mentioned is that of lack of time, which forced
some omissions from the design:

Floating point To support most programming languages fully, and for many real-
world programs, Mite needs floating point support. Its addition is discussed in
section 7.2.1.

Register typing and targeting As discussed in section 6.1.7, virtual register typing and
physical register targeting would both improve the quality of code generated in
the presence of function calls. Additions to support them are proposed respec-
tively in sections 7.1.1.2 and 7.1.1.3.

Consistent semantics The formal presentation of Mite’s semantics has the advantage
of brevity and precision when compared with conventional expositions such as

5Of the other systems considered here, only C-- has systematic support for faulting, and it proved ex-
tremely difficult to specify well [103].

99

6 Assessment

those in [67,72,104]. However, the abstract semantics as presented in appendix A
are not fully consistent with their extension by the assembly language as pre-
sented in chapter 3 and appendix B. The problem, as mentioned in section 4.5,
is that the abstract semantics are entirely dynamic, while those of the assembler
are partly static. This leads to differences in the meaning of some instructions be-
tween the two. For example, NEW has a static effect in the assembly language, so
that a register is created at the point in the program where the NEW is. In the se-
mantics, NEW, like all instructions, is dynamic, so that each time a NEW instruction is
reached, a register is created. The difficulty arose because the semantics, which is
a small-step operational semantics, is easier to specify in dynamic terms, whereas
the translator, in order to generate efficient code, and generate it in a single pass,
requires the program’s meaning to be easily determined statically. A way of fixing
up the semantics is outlined in section 7.1.7.

6.4 Summary

The tests have shown that Mite performs well in practice, with slight reservations about
translation speed and the dynamic memory consumption of the translator, both of
which have been shown to be easy to improve. Furthermore, it was not a great struggle
implementation-wise to achieve these results, and several pointers to ways of improv-
ing both the translator and code generator have been given, especially with regard to
the use of a more optimizing compiler.

It is extremely difficult to give a comprehensive objective assessment of Mite, because
of its broad goals which aim, effectively, to make it all things to all people. An evalu-
ation of it that took into account all the contexts in which it might be used would fill
many volumes. Nevertheless, it has been demonstrated that having fast translation and
fast execution together is possible, and it seems that Mite’s design has indeed managed
to reconcile its divergent goals in a practical and workable system.

The next chapter gathers up the loose ends of the design and implementation into a
plan for their consolidation and improvement.

100

7 Future work

This chapter suggests ways in which both the design and implementation of Mite could
be improved and extended. The recommendations fall into two categories: improve-
ments (section 7.1) which aim to address problems observed in previous chapters, and
extensions (section 7.2) which either improve Mite’s performance, or widen its applica-
tion domain by broadening its functionality.

7.1 Improvements

Most of the improvements discussed here were among many features considered and
rejected while designing Mite. Now that Mite has been implemented and tested, it is
easier to see which of them are most needful, add least complexity to the design, and
are easiest to implement.

7.1.1 Registers

Several problems have been identified with the model of virtual registers, in particular
the lack of virtual register typing and physical register targeting. This section suggests
some solutions.

7.1.1.1 Out of order KILL

Section 6.3.3 pointed out that forcing stack items to be destroyed in stack order can
make the native code less efficient. The restriction was made to simplify, and hence
speed up the translator (see section 4.3.1.1). Allowing out of order KILLs, by adding a
parameter specifying the stack item to be killed, might not harm the performance of the
translator if it did not attempt to reuse the stack space thus freed until all intervening
items had been killed. The benefit would be that the translator would not generate spill
and restore code for registers whose contents is no longer needed, but which cannot
currently be declared dead until all the stack items above them have been killed as
well.

7.1.1.2 Typing

As discussed in section 6.3, registers should be given a type, temporary or variable,
allowing callee and caller-saved registers to be used more prudently by the translator.
The type can be given in the register’s declaration by splitting NEW into NEWT and NEWV.

101

7 Future work

7.1.1.3 Targeting

Register shuffling could be reduced by targeting virtual registers whose physical bind-
ing is known, such as function parameters and return values. This could be done by
adding an optional target to the NEW instruction, so that registers could be declared as
NEW a3/5, to indicate the third argument out of five. Alternatively, Mite’s CALL and RET

instructions could take a list of the instructions used to calculate each argument and re-
turn value. Within each list, register 0 could be used to mean the value being calculated.
The lists would not be allowed to contain further CALLs or RETs. This would allow the
translator to evaluate arguments left-to-right or right-to-left as appropriate, as well as
performing register targeting.

Then, code such as the following, which is taken from the example in section 5.2.2:

MOV 5, 4 get address of root
NEW declare argument register
MOV 8, 5 load argument &root
MOV 5, 3 get address of word
NEW declare argument register
MOV 9, 5 load argument word
CALLF .lookup, 2, [1] call lookup

might become

CALLF .lookup, 2, [1] call lookup
{ MOV 5, 4 get address of root
MOV 0, 5 } load argument &root
{ MOV 5, 3 get address of word
MOV 0, 5 } load argument word

Here, the braces group the code that produces each argument, and the argument regis-
ters are declared implicitly. The following ARM code could be generated:

adds r9, sp, #12 get address of root
movs r1, r9 load argument &root
subs sp, sp, #4 reserve spill slot for argument register
adds r9, sp, #20 get address of word
movs r0, r9 load argument word
add sp, sp, #4 remove argument register spill slot
bl .lookup call lookup

With a better compiler back end that used virtual register targeting too, the following
code would be generated:

CALLF .lookup, 2, [1] call lookup
{ MOV 0, 4 } get address of root
{ MOV 0, 3 } get address of word

resulting in

adds r1, sp, #12 load argument &root
subs sp, sp, #4 reserve spill slot for argument register
adds r0, sp, #20 load argument word
add sp, sp, #4 remove argument register spill slot
bl .lookup call lookup

102

7.1 Improvements

Now, since the function arguments would be guaranteed to be in the right registers
or stack locations by the time of the function call, it would be easy to improve the
intelligence of the stack pointer modification code, leaving just:

adds r1, sp, #12 load argument &root
adds r0, sp, #16 load argument word
bl .lookup call lookup

7.1.1.4 Addressing chunks directly

Chunks are often used to hold records containing register-sized fields which are manip-
ulated individually. Allowing these fields to be accessed directly would improve native
code quality, and could be seen as a less radical alternative to the changes proposed in
the next section. Registers could alias a word in a chunk, which would be used for the
register’s initial value and its spill location. It would have to be possible to force the
register’s value to be written back, either by adding forced read and write instructions,
or by declaring a register “always read” or “always write”, as in PASM [21]. More sim-
ply, chunks could be allowed as the base address in LD and ST instructions; for chunks
located at small offsets from the stack pointer, this could frequently save a register and
an instruction.

7.1.2 Walking the stack

Sections 5.4.1.2 and 5.4.3.3 discussed the need for a stack-walking mechanism. It turns
out that such a mechanism could be added to Mite with modest implementation effort,
minimal overheads, and benefits beyond those already discussed.

There are two main elements to stack walking: knowing the layout of the stack, and
traversing the stack frame. The first is achieved by fixing the stack layout: each virtual
register is required to have a stack slot, and the slots are allocated in numerical order
from the start of the stack frame. This may seem wasteful, as even registers that are
never spilt must have a stack slot (indeed, even constant registers whose value may be
held entirely in instructions), but this is exactly what the current implementation does
anyway, for simplicity and speed of translation. There is no intrinsic time overhead,
only a space overhead, and it is still permissible not to allocate stack slots in leaf pro-
cedures. The only part of the stack whose layout is not now fixed is the return chunk;
section 5.4.3.3 discusses the consequences for garbage collection, and how this lack of
knowledge can be overcome.

Stack traversal is provided by making the register FP, which points to the top of the
stack on entry to the current function, visible in the assembly language. In addition,
manifest constants are extended so that they can be multiplied by the stack direction.
With these two mechanisms, stack items can be addressed using manifest offsets from
FP.

There is one final problem: since virtual registers are cached in physical registers,
the translator must be able to ensure that the values in their stack slots are up to date
when the stack is traversed. The SYNC modifier to CALL ensures that this is the case at

103

7 Future work

a procedure call; it remains to rule that traversing the current stack frame may result
in incorrect values being read for registers (though it may be useful for chunks). Also,
attaching a SYNC to every CALL is expensive, as it effectively forces a caller-saves con-
vention, which must be implemented on top of the system calling convention; most
systems use a mix of caller and callee saving. To minimize the overhead, a second ar-
gument is added to SYNC, which gives a list of registers that should be updated. The
syntax of SYNC becomes:

<reg-list> = <reg>,∗

<sync> = SYNC [<handler>][,<reg-list>]

With this new SYNC, just those registers whose value may be needed in an inner proce-
dure can be updated, such as local variables that must be available to a lexically nested
procedure, or pointers that may be inspected by the garbage collector.

Finally, note that by giving knowledge about the stack layout and allowing it to be
traversed, these mechanisms support rudimentary debugging, although more informa-
tion about the return chunk would be needed to give a stack backtrace, for example.

7.1.3 Flags

Processors without a dedicated flags register would be better served by combined
compare-and-branch and compare-and-set instructions, as discussed in section 4.3.2.
Since these instructions decompose straightforwardly into a compare followed by a
branch or set on machines that do have a flags register, it seems sensible to adopt this
model (in a similar way to the use of three-operand instructions, as discussed in sec-
tion 4.1.1). Thus, there would no longer be a flags register in Mite.

For each current conditional branch instruction, two instructions would be created:
one of the form Bc d,x,y , and one of the form Tc r,x,y . Here, c is a condition code

other than AL, and x and y are the operands; d is a destination address, and r is a result
register. In each instruction, x− y is calculated. Then, for a branch instruction (B), the
branch is taken if the result is true according to the given condition code, c; for a test
instruction (T), 1 is written to register r if the result of the test is true, and 0 otherwise.

This scheme only gives one way of generating flags directly: subtraction. Other oper-
ations that can currently generate flags, such as addition and masking, will require
an extra comparison to do so. However, that is all that many processors offer, and
even Mite’s restricted flags model is too demanding for some: for example, on the
SPARC [137], logical shifts do not set the flags. Another disadvantage of compare-and-
branch is that it can cause extra register shuffling, because if the registers used in the
comparison are dead at the destination, they cannot be killed before the branch, and so
are likely to be spilled before the branch is taken. The extension to KILL proposed in
section 7.1.7 would overcome this problem, as explained there.

104

7.1 Improvements

It might seem that always requiring two operands to the comparison would result
in spurious comparison instructions being inserted when no comparison is actually
needed. Consider the following code fragment:

DEF 4, #0

AND 1, 2, 3 calculate a bit mask
BEQ .zero, 1, 4 branch if all bits clear

When generating code for a machine such as the ARM, which has a flags register, it
seems that the following code might be generated:

and r1, r2, r3 calculate bit mask
cmp r1, #0 check if all bits clear
beq .zero branch if so

whereas in the current system, the virtual code

AND , r4, r5 calculate bit mask
BEQ .zero branch if all bits clear

could be generated, assuming that the bit mask’s value is not required, and this would
obviously translate to

tst r4, r5 calculate bit mask
beq .zero branch if all bits clear

(tst ands its operands and sets the flags accordingly.) However, it is easy for the trans-
lator to elide spurious comparisons with zero (this is the only case common enough
to be worth optimizing), and note that most processors do not have an equivalent of
the ARM’s tst instruction, which makes the current model more problematic for them:
they have to use an extra register. The use of the extra register r1 could similarly be
elided on the ARM.

7.1.4 Code sharing

Code sharing between subroutines and functions, as discussed in sections 3.5 and 4.6,
should be allowed if compilers use it. A way would be needed to indicate functions
that share a RET, or which functions a given RET can return from. It might be necessary
to restrict code sharing to functions with the same parameter types, as some calling
conventions’ procedure epilogues need to know the size of the stack frame.

7.1.5 Tail call

A tail call instruction, like that provided by C--, would allow many function calls to
be optimized. The TCALL instruction could be like the CALL instruction, except with no
return values.

105

7 Future work

7.1.6 Translator

The translator should be rewritten, to achieve the following aims (some of which were
discussed in section 6.2.3):

Layering The translator would be better organized as a series of layers: at the bottom,
an assembler, essentially a series of macros to generate machine instructions given
physical registers; above this, register allocation for a finite number of registers
and label handling; next, spilling, with the object-file decoder on top. It should be
possible to use the layers independently; for example, the instruction generation
macros could be used as a lightning-like system on their own.

Isolation of machine dependencies It should be possible to port the translator by sim-
ply replacing the assembler layer; other changes can always be made later to im-
prove the translator or the code it generates.

Faster translation If Mite is to be used for load-time translation of large binaries and
rapidly reconfigurable systems, its translation speed should be improved. Layer-
ing gives control over translation speed, as it allows the translator to be used at
different levels, but standard translation should also be sped up as discussed in
section 6.2.3.1.

Reduced memory consumption Translating into native code a function at a time
would make peak memory consumption proportional to the size of the largest
function translated rather than that of the largest program. Memory allocation
overheads could be reduced by using arenas [45] for dynamic memory allocation.
Further savings could be made by writing most of the native code into a single
memory block, using code fragments only for register rebinding, as discussed in
section 6.2.3.1.

Dynamic code generation support This is discussed in section 7.2.5.

Sandbox execution This is discussed in section 7.2.6.

When the translator has been rewritten, the first priority should be to port it to other
architectures. An IA-32 port should be made first, partly because it is the commonest
workstation architecture, and partly because as the only mainstream CISC processor
family it is a stern test of Mite’s RISC-like design.1

7.1.7 Consistent semantics

An ideal resolution of the problems discussed in section 6.3.3 would make the assembly
language merely a sugaring of the abstract syntax, plus the optimization directives; at
the moment, the assembly language adds to and changes the abstract semantics.

1As noted in section 2.3, VCODE has no IA-32 implementation.

106

7.2 Extensions

The major problem is to find a unified semantics for the stack instructions. One way
to do this is to make the semantics of the assembly language dynamic, like the ab-
stract semantics. This can be achieved by two changes. First, the assembly language is
changed so that labels are declared before the start of the program. For subroutines and
functions, this includes their parameter and return types, rather like a function proto-
type. Thus, the static NEWs associated with function labels are no longer needed, and
the awkward semantics of CALL, which effectively performs a number of static KILLs at
the moment, become purely dynamic. Secondly, branches are allowed to be decorated
with KILLs, that are performed only if the branch is taken. This allows any change in
the stack state between a branch and its destination to be given explicitly in a dynamic
way, rather than being static and implicit.

Labels would also have to be added to the abstract semantics to unify it with the
concrete; this is beyond the scope of the present discussion, but is not difficult. Finally,
following TAL, it might be useful to define Mite by a series of axioms which could be
used to derive a typed assembly language, of the sort mentioned in section 2.6. This
would give a formal system more suited to making proofs about programs than the
current definition.

7.2 Extensions

Mite is at the moment still quite limited in some ways. Partly, this is due to features
which its design completely omits, such as floating point arithmetic. On the other hand,
certain additions to the implementation would make Mite more attractive to users with-
out requiring changes to the core design: for example, the ability to perform dynamic
code generation, or to run virtual code in a sandbox. This section outlines some exten-
sions of both kinds.

7.2.1 Floating point

If Mite is to be generally useful, it must support floating-point operations, which were
omitted for simplicity, and because of lack of time. Like almost all the systems dis-
cussed in chapter 2, Mite should use the IEEE floating point model [53]. Floating-point
instructions and registers are straightforward to add: the instructions can use the same
three-operand format as the current arithmetic instructions, and floating-point regis-
ters can be declared and used much like integer registers. If 64-bit IEEE representation
was required, then no change would be needed to three-component numbers (see sec-
tion 4.1.3) to accommodate floats in data structures. Extra flags would be needed to
indicate error conditions such as underflow; these would fit into the current model,
and the changes discussed in sections 7.1.3 apply equally well to these new flags.

The most difficult area of any floating point implementation is error handling. Java
and VCODE do not fault, while Dis can, under the control of its floating-point libraries.
For Mite it is more useful to report errors than to fault, as errors can be more easily dealt
with by portable compiled code (see section 6.3.3).

107

7 Future work

7.2.2 Instruction scheduling

Instruction scheduling is obviously lacking. VCODE provides functions to perform in-
struction scheduling, but they slow code generation down, and make it more awkward.
It seems better either to perform limited scheduling automatically, or to perform it as
a post-pass, which could be combined with global optimization on some systems, or
omitted when code generation speed is crucial.

7.2.3 Global optimization

Mite’s current design makes no provision for global optimizations, because most would
force the translator to make at least one extra pass over the code. The best global op-
timization to make would probably be global register allocation, which could remove
much register shuffling at control flow joins. It should be possible to add this as an
optional pass to the translator; ICODE [99] adds a similar option to VCODE.

Some simpler global optimizations would not require extra passes. Interpreters
would benefit from being able to bind key virtual registers permanently to machine
registers. Another register type to go with those introduced in section 7.1.1.2 could
hint that the translator should binding the virtual register permanently to a machine
register. Register usage in loops and shared code could be improved by giving an order
in which to translate sections of the virtual code. The most important parts would be
translated first, and thus have greatest freedom of register use.

Since it requires considerable effort to implement, and will slow down the translator
considerably, full-scale global optimization should be postponed until the other sug-
gested improvements have been made and measured. In any case, it may be better to
use an independent native code global optimiser [12], or perform run-time specializa-
tion [66], using Mite as the dynamic code generator.

7.2.4 Compiler back end

As discussed in section 6.2.2, LCC does not produce well-optimized virtual code.
GNU C [35] performs a much wider range of code transformations, and has a peephole
optimiser. LCC works on a limited range of machines, and only compiles C; GNU C
also supports C++, Objective C, Java, Pascal, FORTRAN and Ada, and is widely ported
and heavily used.

GNU C was not used because with its greater power and flexibility comes extra com-
plexity, and though its documentation is comprehensive, it is less exegetic than LCC’s.
However, for high performance Mite needs a good compiler, and GNU C seems the
best choice for development of a new back end.

7.2.5 Dynamic code generation

Allowing Mite to perform dynamic code generation directly, rather than needing to
save out an object file and translate that, would make it a competitor to VCODE and
PASM. In any case, if Mite is to be used as the sole code generator in a system, it must

108

7.2 Extensions

support dynamic code generation, which is increasingly widely used, for example to
translate portable code downloaded across a network. Mite’s design is suited to dy-
namic code generation, and the layering of the translator proposed in section 7.1.6
would allow the code generation functions to be called directly. Multiple clients should
be able to use Mite simultaneously in a thread-safe manner.

7.2.6 Sandbox execution

In order to run untrusted code safely, it is useful to be able to run it in a controlled
environment, or sandbox, in which it cannot make illegal memory references, or in
any other way affect the operation of the host in an unauthorized manner. Such code
is common in several applications, including user-written network packet filters that
must run in the operating system kernel, and applets downloaded from the internet.

There are two main approaches to sandboxing, which are usually used together. One
is to use an interpreter to run the virtual code, and check all operations such as memory
accesses. This results in poor performance; however, it is the simplest way to ensure the
security of the host machine, and so is widely used, for example by Cintcode. The other
common approach is to verify the virtual code according to some security policy. This is
how proof-carrying code [84] works: the program comes with a proof that it has certain
properties. This proof can be checked by the recipient, and if it is either invalid for the
given program, or does not prove strong enough properties, the program is not run.
Otherwise, the program, which is ordinary native code (with some restrictions) can be
run normally, at full speed, and the host can be confident that it will be safe. The JVM
uses a combination of the two approaches, using type-based byte-code verification to
catch many potential errors before running the program, which can then be run with
far fewer dynamic checks than it would otherwise have needed.

Mite’s low-level design means that it can easily be interpreted, but this would lose all
its performance benefits. On the other hand, its precise specification makes it possible
to design security policies based on properties of the virtual code. In either case, though
infrastructure would be needed that is beyond the scope of Mite’s original design, its
openness would allow the necessary additions to be made without having to change
the core specification.

109

8 Conclusion

To conclude, an appraisal of Mite with reference to its goals is followed by a final per-
spective on its place in the space of virtual machines.

8.1 Appraisal

This section appraises the degree to which Mite meets each of its goals (see sec-
tion 1.2.2).

A low-level processor-based VM model Mite’s VM model is indeed low-level, and
very similar to that of typical processors: especially on RISC machines, most of
Mite’s computational instructions translate into a single machine instruction.
As discussed in section 6.3.3, some high-level features had to be introduced to
combine portable virtual code with high-performance native code, but these do
not compromise the reason for having a low-level model, which was to make
translation of virtual into native code simple.

Architecture neutrality Mite achieves a high degree of architecture neutrality largely
by dint of implementing a subset of the facilities provided by most processors.
Despite its RISC-like appearance, section 5.5 demonstrated that translating Mite
for CISC architectures is straightforward.

Language neutrality Mite is less language neutral than it might be, because mecha-
nisms such as accurate tracing garbage collection and closures, which are relied
on by many languages, especially the more modern ones, cannot currently be im-
plemented both efficiently and portably. Section 7.1.2 described how stack walk-
ing, which would aid efficient implementation of these and similar mechanisms,
could be added to Mite. This outcome largely reflects Mite’s similarity to real pro-
cessors, which lack direct support for these mechanisms, and therefore force them
to be programmed in a machine-dependent way if they are to be efficient.

Portable virtual code It is straightforward to generate completely portable code for
Mite. As discussed in section 5.1.5, this does not completely solve the portabil-
ity problem; for that, any libraries which are used by the portable code must be
callable in a machine-independent manner.

Fast JIT translation Section 6.1.5 showed that Mite gives reasonably fast single-pass
JIT translation, and section 6.2.3.1 discussed ways of improving the speed further.

110

8.2 Perspective

High-quality native code Mite’s performance was shown in section 6.1.2 to be good
in the current implementation; however, an optimizing compiler back end and
translators for more machines are needed to make this demonstration unequivo-
cal.

Virtual code annotation Mite’s virtual code annotations were shown to be both neces-
sary and sufficient to ensure that good native code is produced (see section 6.1.2).
Further annotations to improve the code generated around function calls were
suggested in section 7.1.1.

Interworking with native code Since Mite can use the system calling convention on its
host machine, and can address data anywhere in its host address space (if per-
mitted to), it can easily and fully interwork with native code. All the tests in sec-
tion 6.1 were linked against the unmodified system libraries, using the method
described in section 5.1.5.

Portable object format Mite’s simple byte-oriented object format is fully portable.

Precise definition Mite’s definition is precise and unambiguous. Some problems with
it were identified in section 4.5, but these affect only the semantics’ use for proof,
and a solution was given in section 7.1.7.

Mite has substantially met all its goals. To be practically useful, however, it needs to
be more implemented for more processors, and targeted by better compilers for more
languages.

8.2 Perspective

The emergence of a new wave of VMs in the last few years shows that a portable,
fast execution platform is desirable. Their proliferation and lack of general acceptance
points to the need for a more general-purpose system.1 Recent interest in typed as-
sembly languages [82] and the many attempts to formalize the JVM [5] suggest that a
formal definition is important. After a period of homogenization, the processor market
appears to be on the crest of a new wave of architectural diversity; at the same time,
the long-predicted shift from 32 to 64-bit architectures is underway. Both these factors
increase the need for portable code, and in particular, a way of making legacy code
easily portable to new architectures. Networks and distributed applications are now of
central importance: these too demand portability, along with distribution and security.
However, any system offering all these features is doomed to fail; it cannot be flexible
enough to be universal, nor can it evolve as better answers to these problems are found.

1Despite sustaining enormous interest for several years, Java still shows no sign of fulfilling its promise
of delivering “write once, run anywhere” applications, destroying the barriers between different OSs
and machines for user and developer alike. I think that the most important reasons are the over-
specialization and poor resource consumption of the Java VM.

111

8 Conclusion

Mite provides a flexible way to address all these needs, without attempting to be a
complete solution. Its similarity to independent recent work such as VCODE [29] sug-
gests that its design is on the right track; at the same time it is simpler than comparable
systems. Its performance is adequate, and readily bettered. The improvements recom-
mended in the previous chapter would make Mite a compelling choice for all its target
applications. Instead of being a solution, a rightly maligned concept, Mite is a tool: sim-
ple and small enough to be adopted and adapted as a central part of every software
system. Only the simple should be ubiquitous.

112

A Semantics

A.1 Introduction

Mite’s semantics are defined in terms of an abstract machine, which consists of a state
and a set of rules for transforming it according to a program.

A.2 Definitions

Quantity a string of bits

q[i . . . j] the quantity consisting of bits i to j inclusive of quantity q

Width the number of bits in a quantity

A either 32 or 64

Word an A-bit quantity

w-aligned a multiple of w

Size an expression of the form b + w + r, where b, w, and r are non-negative integers,
whose value is b + Aw + 32 ⌊A/64⌋ r

ρ an undefined quantity of infinite width

[S] a bit representing the truth of statement S; if S is true then [S] is one, otherwise it is
zero

q← E the assignment of expression E to quantity q; before assignment, E is truncated
or zero-extended to make it the same width as q

Stack a last-in-first-out stack whose items are said to be added to the top, and are
numbered from one, counting from the bottom

s[i] the ith item of stack s

s[i . . . j] the stack consisting of items i to j inclusive of stack s

s⊕ E the stack s with an extra item added whose value is E

113

A Semantics

A.3 State

Mite’s state consists of the following elements:

Flags fZ, fN, fC, fV one bit each

Execution pointer EP a word

Temporary register T a word

Memory M a quantity

Permutation functions p8, p16, p32, pA

Stack S a stack

Frame stack F a stack

An index into M is called an address.
The function pw takes a quantity of width w and returns it with its bytes permuted.
F is a stack of pairs of naturals. FP is the index of the top-most item in F. FS(i) and

FN(i) denote respectively the first and second component of the ith item of F. A stack

position is a natural p in the range 1 . . . FN(FP).
S holds items of two sorts: a register is a word created by NEW(), and a chunk is

a quantity of arbitrary size created by NEW(c) (see section A.5.7). The stack items are
held in M at word-aligned addresses.

Sp, where p is a stack position, denotes S[FS(FP)+ p− 1]; &Sp denotes the address of
Sp. SP is an abbreviation for FS(FP) + FN(FP)− 1.

A.4 Program

An instruction consists of an operation and a tuple of operands. Each operand has
a type, given by its name; a subscript is added to distinguish operands of the same
type. The allowable instructions are given in section A.5. The program P is an array of
instructions; P[i] denotes the ith element of P.

The types are:

Stack position p a stack position

Natural n a non-negative integer

Register r a stack position p such that Sp is a register, or T

Chunk c a stack position p such that Sp is a chunk

Width w a member of the set {8, 16, 32, A}

Size s a size

114

A.5 Instructions

A.5 Instructions

The state is transformed by repeatedly performing EP ← EP + 1 then the semantics of
P[EP− 1]. The semantics of each instruction are given below in terms of assignments
to state elements, and other instructions; the operations are performed sequentially. An
underlined expression is a predicate that must evaluate to true when the instruction is
executed; otherwise the instruction has no effect.

Arithmetic is integral, performed on A-digit binary numbers using two’s comple-
ment interpretation. Quantities are evaluated with bit zero as the least significant digit.

The semantics of every instruction have the assignment T ← ρ prepended, and also,
for all instructions except branches (see section A.5.4), the following:

fZ ← ρ

fN ← ρ

fC ← ρ

fV ← ρ

For branches, the four instructions above are added to the end of the instruction’s se-
mantics.

A.5.1 Assignment

MOV(r1, r2) : Sr1 ← Sr2

fZ ← [Sr1 = 0]
fN ← [Sr1 < 0]

MOV(r, c) : Sr ← &Sc

fZ ← [Sr1 = 0]

SWAP(r1, r2) : T ← Sr1

Sr1 ← Sr2

Sr2 ← T

A.5.2 Data processing

All the data processing instructions except MUL, DIV[S[Z]] and REM[S[Z]] have

fZ ← [Sr1 = 0]

fN ← [Sr1 < 0]

appended to the end of their semantics.

115

A Semantics

A.5.2.1 Arithmetic

NEG(r1, r2) : Sr1 ← −Sr2

fC ← [Sr1 = 0]
fV ← [Sr1 = −2A−1]

ADD(r1, r2, r3) : Sr1 ← Sr2 + Sr3

fC ← carry out of most significant bit
fV ← [signed overflow occurred]

SUB(r1, r2, r3) : Sr1 ← Sr2 − Sr3

fC ← carry out of most significant bit
fV ← [signed overflow occurred]

MUL(r1, r2, r3) : Sr1 ← Sr2 × Sr3

DIV(r1, r2, r3) : Sr3 6= 0

Sr1 ← Sr2 ÷ Sr3 , treating Sr2 and Sr3 as unsigned, and rounding
the quotient to 0

DIVS(r1, r2, r3) : Sr3 6= 0

Sr1 ← Sr2 ÷ Sr3 , treating Sr2 and Sr3 as signed, and rounding the
quotient to −∞

DIVSZ(r1, r2, r3) : Sr3 6= 0

Sr1 ← Sr2 ÷ Sr3 , treating Sr2 and Sr3 as signed, and rounding the
quotient to 0

REM(r1, r2, r3) : DIV(T, r2, r3)
r1 ← r2 − T× r3

REMS(r1, r2, r3) : DIVS(T, r2, r3)
r1 ← r2 − T× r3

REMSZ(r1, r2, r3) : DIVSZ(T, r2, r3)
r1 ← r2 − T× r3

A.5.2.2 Logic

NOT(r1, r2) : Sr1 ← one’s complement of Sr2

AND(r1, r2, r3) : Sr1 ← bitwise and of Sr2 and Sr3

OR(r1, r2, r3) : Sr1 ← bitwise or of Sr2 and Sr3

XOR(r1, r2, r3) : Sr1 ← bitwise exclusive-or of Sr2 and Sr3

116

A.5 Instructions

SL(r1, r2, r3) : 0 ≤ Sr3 ≤ A

Sr1 ← Sr2 shifted left Sr3 places
fC ← carry out of most significant bit, if Sr3 > 0

SRL(r1, r2, r3) : 0 ≤ Sr3 ≤ A

Sr1 ← Sr2 shifted right logically Sr3 places
fC ← carry out of least significant bit, if Sr3 > 0

SRA(r1, r2, r3) : 0 ≤ Sr3 ≤ A

Sr1 ← Sr2 shifted right arithmetically Sr3 places
fC ← carry out of least significant bit, if Sr3 > 0

A.5.3 Memory

LD(w, r1, r2) : Sr1 ← 0
Sr1 [0 . . . w− 1]← pw(M[Sr2 . . . Sr2 + w− 1])

ST(w, r1, r2) : M[Sr2 . . . Sr2 + w− 1]← p−1
w (Sr1 [0 . . . w− 1])

COPY(s, r1, r2) : Sr1 + s ≤ Sr2 or Sr2 + s ≤ Sr1

M[Sr1 . . . Sr1 + s− 1]← M[Sr2 . . . Sr2 + s− 1]

COPY(s, r, c) : Sr + s ≤ &Sc or &Sc + s ≤ Sr

M[Sr . . . Sr + s− 1]← M[&Sc . . . &Sc + s− 1]

COPY(s, c, r) : &Sc + s ≤ Sr or Sr + s ≤ &Sc

M[&Sc . . . &Sc + s− 1]← M[Sr . . . Sr + s− 1]

COPY(s, c1, c2) : &Sc1 + s ≤ &Sc2 or &Sc2 + s ≤ &Sc1

M[&Sc1 . . . &Sc1 + s− 1]← M[&Sc2 . . . &Sc2 + s− 1]

A.5.4 Branch

BAL(r) : EP← Sr

BEQ(r) : fZ = 1

EP← Sr

BNE(r) : fZ = 0

EP← Sr

BMI(r) : fN = 1

EP← Sr

117

A Semantics

BPL(r) : fN = 0

EP← Sr

BCS(r) : fC = 1

EP← Sr

BCC(r) : fC = 0

EP← Sr

BVS(r) : fV = 1

EP← Sr

BVC(r) : fV = 0

EP← Sr

BHI(r) : fC = 1 and fZ = 0

EP← Sr

BLS(r) : fC = 0 or fZ = 1

EP← Sr

BLT(r) : fN 6= fV

EP← Sr

BGE(r) : fN = fV

EP← Sr

BLE(r) : fZ = 1 or fN 6= fV

EP← Sr

BGT(r) : fZ = 0 and fN = fV

EP← Sr

A.5.5 Call and return

CALL(r, p) : NEW(s)
S[SP][o . . . o + A− 1]← EP
EP← Sr

F[FP]← (FS(FP), FN(FP)− (p + 1))
F← F⊕ (SP + 1, p + 1)

RET(c) : EP← Sc[o . . . o + A− 1]
KILL(c)
F← F[1 . . . FP− 2]⊕ (FS(FP− 1), FN(FP− 1) + FN(FP))

118

A.5 Instructions

o and s may vary between instructions, but should be the same for corresponding CALLs
and RETs; s is at least A, and 0 ≤ o ≤ s− A.

A.5.6 Catch and throw

CATCH(r) : Sr ← FP

THROW(r1, r2, r3) : EP← Sr1

F ← F[1 . . . Sr2]
S← S[1 . . . SP− 1]⊕ Sr3

A.5.7 Stack

NEW() : S← S⊕ ρ[0 . . . A− 1]
F[FP]← (FS(FP), FN(FP) + 1)

NEW(s) : S← S⊕ ρ[0 . . . s− 1]
F[FP]← (FS(FP), FN(FP) + 1)

KILL(p) : S[FS(FP) + p− 1 . . . SP− 1]← S[FS(FP) + p . . . SP]
F[FP]← (FS(FP), FN(FP)− 1)
S← S[1 . . . SP]

119

B Assembly language

B.1 Introduction

Mite’s assembly language is based on the abstract syntax. Where the two correspond
exactly the semantics are the same; the semantics of departures from and extensions to
the abstract syntax are given below.

B.2 Metagrammar

The grammar is described in a BNF-like notation. Terminal tokens are shown thus,
and non-terminal tokens <thus>. Space or lack of it between tokens, including line
breaks, is significant. Terms are formed from tokens and the following operators, given
in decreasing order of precedence:

Zero or more repetitions of a term are denoted by appending an asterisk, thus: A∗.

One or more repetitions of a term are denoted by appending a plus sign, thus: A+.

Lists are denoted by a single terminal character before a repetition symbol: for exam-
ple, <ship>,+ denotes a comma-separated list of one or more ships.

Concatenation is denoted by textual concatenation, thus: AB.

Alternation is denoted by a vertical bar, thus: A | B.

Optional terms are enclosed in brackets: A cat’s[-tail [causes]] wounds!

Parentheses may be used to override precedence: for example, (<A> |)<C>
means “<A> or , followed by <C>”.

A production consists of the non-terminal being defined, followed by an equals sign,
followed by the defining term: <insect> = <head><thorax><abdomen>.

120

B.3 Identifier

B.3 Identifier

<d-digit> = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<h-digit> = <d-digit> | A | B | C | D | E | F

<letter> = a |... | z | A |... | Z

<alphanumeric> = <letter> | <d-digit> | _ | .

<identifier> = (<letter> | _)<alphanumeric>∗

An identifier is a string of letters, numbers, underscores and full stops, starting with a
letter or underscore.

B.4 Number

<natural> = <h-digit>+[:(b | o | d | h)]

<integer> = [-]<natural>

<size> = <natural>[@<natural>[@<natural>]]

<offset> = <integer>[@<integer>[@<integer>]]

<width> = 1 | 2 | 4 | a

A natural number is a string of hex digits (see section B.3) optionally followed by a
colon and a base (b for binary, o for octal, d for decimal and h for hexadecimal); numbers
may only contain digits allowed by the base. If there is no base the number is decimal.
An integer is a natural with optional initial minus sign. Three-component numbers
have the components separated by @.

Widths are given in bytes; a represents A/8.

B.5 Item

<item> = <natural>

<reg> = <item>

A <reg> is a register; T is not directly accessible.

121

B Assembly language

B.6 Label

<l-label> = .<identifier>

<x-label> = x<l-label>

<label> = <l-label> | <x-label>

<label-exp> = <label>[+<size>]

A local label (<l-label>) is the address of a location (see section B.9). An external label
(<x-label>) refers to a label in another module.

When a label is used as an address the semantics of the instruction are preceded by
T ← l, and the label is replaced by T in the instruction’s signature.

B.7 Manifest

<constant> = ashift

<manifest> = #<offset> | <constant> | <label-exp>

The value of the constant ashift is log2 A/8.

B.8 Instruction

<instruction> = <assignment> | <dataproc> | <memory> | <branch> |
<callret> | <throwcat> | <stack> | <escape> | <datum>

B.8.1 Assignment

<assignment> = MOV <reg>,(<reg> |<manifest>) |
DEF <reg>,<manifest> |
UNDEF <reg> |
SWAP <reg>,<reg>

The instruction MOV r,m , where m is a manifest, has the semantics

Sr ← m

The instruction DEF r,m has the same semantics as MOV r,m , but the register is made

constant. The instruction UNDEF r makes r non-constant, as does MOV when applied to
a constant register. Constant registers may only be modified by DEF, UNDEF, or MOV.

122

B.8 Instruction

B.8.2 Data processing

<dataproc> = <2-op> <reg>,<reg> |
<3-op> [<reg>],<reg>,<reg> |
<4-op> [<reg>],[<reg>],<reg>,<reg>

<3-op> = <arithmetic> | <logical> | <shift>

<2-op> = NEG | NOT

When a destination is omitted, it is T. The only 3-operand instructions whose destina-
tion may be omitted are SUB, AND and XOR. At most one destination may be omitted in a
4-operand instruction.

B.8.2.1 Arithmetic

<arithmetic> = ADD | SUB | MUL

<4-op> = DIV[S[Z]]

The instruction DIV[S[Z]] q,r,x,y has the semantics

DIV[S[Z]](q, x, y)
REM[S[Z]](r, x, y)

q and r must be distinct.

B.8.2.2 Logical

<logical> = AND | OR | XOR

<shift> = SL | SRL | SRA

B.8.3 Memory

<memory> = LD_<width> <reg>,[<reg>[,<reg>]] |
ST_<width> <reg>,[<reg>[,<reg>]] |
COPY_<size> <item>,<item>

LD or ST_w r1,[r2,r3] has the semantics

T ← Sr2 + Sr3

LD or ST(w, r1, T)

123

B Assembly language

B.8.4 Branch

<condition> = AL | EQ | NE | MI | PL | CS | CC | VS | VC | HI | LS | LT | GE |
LE | GT

<address> = <reg> | <label>

<branch> = B<condition> <address>

A branch to the value of a register must be to an indirectable label (see section B.9.2).
The types of stack items active at both branch and destination must match (including
the constancy of registers and values of constants).

B.8.5 Call and return

<type-list> = [(<natural>,<size>),∗[<natural>]]

<reg-list> = [<reg>,∗]

<callret> = CALL[F[V]] <address>,<natural>,<type-list> [<sync>] |
CALLFC[V] <address>,<natural>,<item> [<sync>] |
RET[F] <item>,<reg-list>

In the instruction CALL a,p,[t1,. . . ,tn] , a must be the value of a subroutine label (see

section B.9.4). If the address is a register, it must hold the address of an indirectable
subroutine (see section B.9.2). p is the number of parameters. The type list gives the
format of the return values, from bottom-most to top-most on the stack. The list items
give alternately a number of registers followed by the size of a chunk. All chunk sizes
must be non-zero. Any registers returned are ranked in descending order from the top
of the stack downwards, and the return values are ranked above registers already on
the stack. <sync> is described in section B.8.6.

CALLF has the same effect as CALL except that the system calling convention is used,
and the number of return values must be zero or one. The first argument goes on top
of the stack. CALLFV and CALLFCV are used to call a variadic function (see section B.9.4);
in this case the second operand is the total number of parameters being passed. CALLFC
and CALLFCV are used when the function returns a chunk, and the third operand gives
either a register holding the address to which the return value should be copied, or the
chunk in which it should be stored.

In the instruction RET c,[r1,. . . ,rn] , c must be the chunk placed on the stack on
entry to the subroutine or function. The register list gives the return values, which must
be in ascending stack order, and match the types in the corresponding CALL instruction.
A RET is assumed to return from the textually most recently declared subroutine or
function. RET must be used to return from subroutines, and RETF from functions.

124

B.8 Instruction

B.8.6 Catch and throw

<throwcat> = CATCH <reg>,<l-label> |
THROW <reg>,<reg>,<reg> [<sync>]

<sync> = SYNC <l-label>

In the instruction CATCH s,l , l must be a handler’s label (see section B.9.3) in the current

subroutine. s is set to the corresponding stack pointer. In THROW l,s,c , l must be the
value of a handler’s label, and s the address returned by CATCH for that label. The CATCH

must have been executed in the current subroutine or function, or one of its callers.

A SYNC is performed before the semantics of the instruction to which it is attached. In

SYNC l , l must be a handler’s label in the current subroutine. When a handler is reached
via a THROW instruction, registers other than the top-most stack item have the same value
as just before the last SYNC performed for that handler’s label in the instantiation of the
subroutine or function which is thrown to, provided they have not been altered since.

B.8.7 Stack

<stack> = NEW[_<size>] |
KILL |
RANK <reg>,<natural> |
REBIND

The instruction NEW creates a register with undefined value. The instruction NEW_s

creates an s-byte chunk. KILL kills the top-most item on the stack. Items further down
may not be killed.

Registers are ranked, the ranking giving the order in which they would ideally be
assigned to physical registers. The rankings are distinct and contiguous, the highest
being 1. The instruction RANK r,n changes the rank of register r to n. n must be between
1 and the number of registers. When a register is killed or ranked, the rankings of the
other registers are adjusted accordingly. Newly created registers have rank 1. REBIND

causes the bindings of virtual to physical registers to be updated to reflect the current
ranking.

Stack instructions are interpreted statically: the NEW and KILL for a register must tex-
tually enclose all other uses. Apart from NEW and KILL the only instruction that affects
the state of the stack seen by the textually next directive (see section B.10) is CALL, which
kills the parameters and creates the return values.

B.8.8 Escape

<escape> = ESC #<natural>

ESC performs arbitrary actions.

125

B Assembly language

B.8.9 Datum

<datum> = LIT_<width> <manifest>,+ |
SPACE[Z]_<width> <size>

The instruction LIT_w v1,. . . ,vn places the values v1 to vn in contiguous locations,
starting at the next w-aligned address after the preceding datum, if any. Label values
may only be used when w is a.

The instruction SPACE[Z]_w n reserves n w-words, starting at the next w-aligned
address after the preceding datum, if any. If the Z modifier is used the space is zero-
initialised.

B.9 Location

<location> = <code> | <handler> | <subroutine> | <function> | <data>

A location assigns the address of the next piece of code or data to the given label.

A datum (see section B.8.9) may only appear after a <data>, and other instruc-
tions may only appear after a non-<data> location. The flow of control must never
fall through to a location other than a code or handler labelling.

B.9.1 Labelling

<labelling> = [p]<l-label>

If p is used the label is public, and may be visible outside the module.

B.9.2 Code

<code> = [i]<labelling>

If i is used the label may be used as the target of an indirect (register) branch.

B.9.3 Handler

<handler> = h<labelling>

A handler is the same as a labelling, except that it may also be given as the label for
a CATCH instruction (see section B.8.6). The top-most stack item at a handler must be a
non-constant register.

126

B.10 Directive

B.9.4 Subroutine and function

<subroutine> = s[l]<labelling>

<function> = f[l][c][v]<labelling>

The code in a subroutine or function extends from its labelling to the next subroutine
or function labelling. The state of the stack directly before the subroutine or function
specifies the number and type of its parameters (with the exception of a function’s
variadic parameters). Subroutines must be reached by CALL, and functions by CALLF.

If l is used in a subroutine or function labelling, the subroutine or function is a leaf
routine, and may not perform any CALL instructions.

If c is used in a function labelling, the function returns a chunk. If v is used, the
function is variadic, and the V modifier must be added to CALLF. On entry to a vari-
adic function the variadic arguments are stored in chunk 1, which should be declared
with size 0. Their layout is system-dependent. The non-variadic arguments should be
declared as normal.

The return chunk, which is placed on top of the stack on entry to a function or sub-
routine, must not be written to.

B.9.5 Data

<data> = d[r]<labelling>

If r is used the data up to the next data location are read-only; otherwise they are
writable. The data in a program define the initial contents of the memory. A data la-
belling has the same alignment as the first datum following it (see section B.8.9).

B.10 Directive

<directive> = <instruction> | <location>

B.11 Module

<module> = <directive>+

B.12 Comments

A comment, starting with a semicolon, may be placed at the end of any line or on a line
by itself.

127

C Object format

C.1 Introduction

Mite’s assembler writes object modules in the format given below, which is a direct
encoding of the concrete syntax.

C.2 Presentation

Hexadecimal numbers are followed by an “h”; for example, 100 = 64h. Binary numbers
are similarly suffixed “b”.

The encoding is presented diagrammatically. Boxes representing bit fields are con-
catenated to make bytes or larger words:

3 1 4

These in turn are listed vertically. The contents of a bit field is given either as literal
binary digits (01101001), or as a name. Fields are usually labelled with their width:

5 3

The most significant bit is at the left-hand end of the word, and the least significant at
the right-hand end. Multi-byte words are stored with their bytes in little-endian order.

Boxes labelled in ordinary type (box) represent units which themselves have internal
structure. Boxes labelled in italics (scatola) are numbers (see section C.3). Optional units
are shown as dashed boxes:

1

Lists are denoted by a stack:

1

128

C.3 Number

C.3 Number

Unsigned numbers are encoded as follows:

1. A list of 7-bit words is formed by repeatedly removing the least significant seven
bits of the number until none of the remaining bits is set.

2. The 7-bit words are turned into bytes by the addition of a bit at the most signifi-
cant end, which is zero for all the quantities except the first.

3. The bytes are stored in the reverse order to that in which they were generated.

Signed numbers are encoded in the same way except that the list is formed by repeat-
edly removing the least significant seven bits of the number until all the remaining bits
are the same as the most significant bit of the previous 7-bit word. Three-component
numbers are encoded as three consecutive numbers.

C.3.1 Width

Widths of quantities are encoded as

Width Code

1 00b
2 01b
4 10b
a 11b

C.4 Identifier

All strings are ASCII-encoded, preceded by a number giving their length.

C.5 Item

Stack items are encoded as a number (see section C.3).

C.6 Address

Local addresses give the number of a label (see section C.10), and are stored as a num-
ber. External addresses are stored as an identifier.

129

C Object format

Address types are encoded as

Type Code

Register 00b
Local label 01b

Global label 10b

C.7 Manifest

The type of a manifest quantity is given by an op type field, which is encoded as

Operand type op type

number 000b
3-component number 001b
constant 010b
local label 100b
local label plus offset 101b
external label 110b
external label plus offset 111b

Constants are encoded as a single byte; for ashift the byte is 00h. A label expression
is represented as the number or name of the label followed by the offset, which is a
three-component number (see section C.3).

C.8 Lists

The list elements are stored consecutively. The length is encoded as a number directly
before the list elements.

C.9 Instruction

Instructions are encoded as the opcode followed by the operands, encoded in order
from left to right. The operands are encoded as in the preceding sections; lists of items
and types enclosed in brackets are stored as lists.

130

C.9 Instruction

C.9.1 MOV and DEF

A MOV instruction whose second operand is a register is encoded as 0000 0000b. DEF and
MOV with a manifest second operand are encoded as

1

0

3

011

1

inst

3

op type

where the inst bit is clear for MOV and set for DEF, and the op type field gives the type of
the value, encoded as in section C.7.

C.9.2 Data processing

C.9.2.1 Three-operand

1

0

3

inst

3

011

1

dest

The inst field indicates the instruction:

Instruction inst

ADD 000b
SUB 001b
AND 010b
OR 100b
XOR 101b

The dest bit is set if the destination is present.

C.9.2.2 Four-operand

1

0

2

inst

3

011

1

quot

1

rem

The inst field indicates the instruction:

Instruction inst

DIV 00b
DIVS 01b
DIVSZ 10b

The quot bit is set if the first destination is present, and the rem bit if the second desti-
nation is present.

131

C Object format

C.9.3 Memory

1

0

1

inst

3

011

1

off

2

width

The inst bit is clear for LD and set for ST. The off bit is set if a third (offset) register is
given. The width field gives the width of the quantities being transferred, encoded as in
section C.3.1.

C.9.4 Branch

2

11

2

adr

4

condition

The adr field encodes the address type as in section C.6. The condition is encoded as

Condition condition

AL 0001b
EQ 0010b
NE 0011b
MI 0100b
PL 0101b
CS 0110b
CC 0111b
VS 1000b
VC 1001b
HI 1010b
LS 1011b
LT 1100b
GE 1101b
LE 1110b
GT 1111b

C.9.5 Call and return

CALL is encoded as

3

011

1

f

1

c

1

v

2

adr

where the f bit is set for CALLF, the c bit is set if the C modifier is used, and the v bit
if the V modifier is used. The adr field encodes the address type as in section C.6. The
argument types are alternately 1 and 3-component numbers.

132

C.9 Instruction

RET is encoded as

4

1000

3

011

1

f

where the f bit is set for RETF.

C.9.6 SYNC

SYNC is encoded as a separate instruction immediately following the instruction to
which it is attached. Its opcode is 0001 0101b. It is not counted as a separate directive in
the count in the module header (see section C.12).

C.9.7 NEW

4

1001

3

011

1

c

If the c bit is set, a chunk is being declared.

C.9.8 Datum

C.9.8.1 Literal

3

011

2

width

3

op type

manifest

The width field gives the width of the literals. The op type field gives the literal type,
encoded as in section C.7. The list of manifests follows.

C.9.8.2 Space

2

00

3

011

1

zero

2

width

The zero bit is set if the space is zero-initialised; the width field gives the width of the
words being reserved.

133

C Object format

C.9.9 Other instructions

The remaining instructions are encoded thus:

Instruction inst

UNDEF 0000 0001b
SWAP 0000 0010b
NEG 0000 0100b
NOT 0000 0101b
MUL 0000 1000b
SL 0000 1001b
SRL 0000 1010b
SRA 0001 0000b
COPY 0001 0001b
CATCH 0001 0010b
THROW 0001 0100b
KILL 0010 0000b
RANK 0010 0001b

REBIND 0010 0010b
ESC 0010 0100b

C.10 Location

Labellings, handlers and subroutines are encoded thus:

2

10

3

011

2

lab type

1

ind

name

The lab type field gives the type of label, encoded as

Label type lab type

ordinary 00b
handler 01b

subroutine 10b
leaf subroutine 11b

If the ind bit is set the label is indirectable. A public label has an identifier after the
opcode byte, starting with an underscore. (This means that the encoding is ambiguous,
as the underscore could also represent part of another instruction.)

The labels are numbered consecutively from one.

134

C.11 Data

Functions are encoded

1

1

3

011

1

l

1

v

1

c

1

pub

name

where the l bit is set if the function is a leaf, the v bit is set if it is variadic, the c bit is
set if it returns a chunk, and the pub bit if the label is public. A public function has an
identifier after the opcode byte.

C.11 Data

3

100

3

011

1

ro

1

pub

name

If the ro bit is set the following data is read-only; otherwise it is read-write. If the pub

bit is set it is public, otherwise it is private. A public data label has an identifier after
the opcode byte.

C.12 Module

header

directive

A module consists of a header and a list of directives.

32

AD2BC0DEh

8

version

24

length

labels

The header starts with a magic number. Next comes a byte containing the version num-
ber of the encoding. The current version number is 0. Next comes the length of the
module in bytes excluding the header, and finally the number of labels.

135

D Source code of tests

D.1 The fast-Fourier transform test (fft)

#include <stdio.h>
#include <stdlib.h>

#define modulus 0x10001 /* 2**16 + 1 */
#define omega 0x00003
const int ln = 16;
#define N (1<<ln) /* N is a power of 2 */
#define upb (N-1)
int *data;

int add(int x, int y) {
int a = x+y;
return a < modulus ? a : a - modulus;

}
#define neg(x) (modulus-(x))
#define sub(x, y) add((x), neg(y))
int mul(int x, int y) {

if (x == 0) return 0;
if ((x & 1) == 0) return mul(x>>1, add(y,y));
return add(y, mul(x>>1, add(y,y)));

}

void fft(int *v, int ln, int w) /* ln=log2 n, w=nth root of unity */ {
int n = 1<<ln;
int *vn = v+n;
int s;

{ int j = 0, i;
for (i = 0; i < n-1; i++) {

int k = n>>1;
if (i<j) { int t = v[j]; v[j] = v[i]; v[i] = t; }
while (k<=j) { j -= k; k >>= 1; } /* "increment" j */
j += k;

}
}

for (s = 1; s <= ln; s++) {
int m = 1<<s;

136

D.1 The fast-Fourier transform test (fft)

int m2 = m>>1;
int wk = 1, wkfac = w, i, j;

for (i = s+1; i <= ln; i++) wkfac = mul(wkfac, wkfac);
for (j = 0; j < m2; j++) {

int *p = v+j;

while (p<vn) { /* the butterfly operation */
int a = *p, b = mul(p[m2], wk);
*p = add(a,b); p[m2] = sub(a, b);
p += m;

}
wk = mul(wk, wkfac);

}
}

}

void pr(int *v, int max) {
int i;

for (i = 0; i <= max; i++) {
printf("%5d ", v[i]);
if (i % 8 == 7) putchar(’\n’);

}

putchar(’\n’);
}

int main(void) {
int i;

printf("fft with N = %d and omega = %d modulus = %d\n\n",
N, omega, modulus);

data = (int *)malloc(upb * sizeof(int));

for (i = 0; i <= upb; i++) data[i] = i;
pr(data, 7);

fft(data, ln, omega);
pr(data, 7);
return 0;

}

137

D Source code of tests

D.2 Pyramid register allocation test (pyram)

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y, loop;

a= rand(); b= rand(); c= rand(); d= rand(); e= rand();
f= rand(); g= rand(); h= rand(); i= rand(); j= rand();
k= rand(); l= rand(); m= rand(); n= rand(); o= rand();
p= rand(); q= rand(); r= rand(); s= rand(); t= rand();
u= rand(); v= rand(); w= rand(); x= rand(); y= rand();

for (loop= 0; loop < 1000000; loop++) {
a= a+1;
b= a-b+1;
c= a+b-c+1;
d= a-b+c-d+1;
e= a+b-c+d-e+1;
f= a-b+c-d+e-f+1;
g= a+b-c+d-e+f-g+1;
h= a-b+c-d+e-f+g-h+1;
i= a+b-c+d-e+f-g+h-i+1;
j= a-b+c-d+e-f+g-h+i-j+1;
k= a+b-c+d-e+f-g+h-i+j-k+1;
l= a-b+c-d+e-f+g-h+i-j+k-l+1;
m= a+b-c+d-e+f-g+h-i+j-k+l-m+1;
n= a-b+c-d+e-f+g-h+i-j+k-l+m-n+1;
o= a+b-c+d-e+f-g+h-i+j-k+l-m+n-o+1;
p= a-b+c-d+e-f+g-h+i-j+k-l+m-n+o-p+1;
q= a+b-c+d-e+f-g+h-i+j-k+l-m+n-o+p-q+1;
r= a-b+c-d+e-f+g-h+i-j+k-l+m-n+o-p+q-r+1;
s= a+b-c+d-e+f-g+h-i+j-k+l-m+n-o+p-q+r-s+1;
t= a-b+c-d+e-f+g-h+i-j+k-l+m-n+o-p+q-r+s-t+1;
u= a+b-c+d-e+f-g+h-i+j-k+l-m+n-o+p-q+r-s+t-u+1;
v= a-b+c-d+e-f+g-h+i-j+k-l+m-n+o-p+q-r+s-t+u-v+1;
w= a+b-c+d-e+f-g+h-i+j-k+l-m+n-o+p-q+r-s+t-u+v-w+1;
x= a-b+c-d+e-f+g-h+i-j+k-l+m-n+o-p+q-r+s-t+u-v+w-x+1;
y= a+b-c+d-e+f-g+h-i+j-k+l-m+n-o+p-q+r-s+t-u+v-w+x-y+1;
}

printf("%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d "
"%d %d %d %d %d %d %d %d %d %d %d\n",
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y);

return 0;
}

138

E Results of the tests

This appendix lists the data on which figures 6.1–6.7 are based. The data are tabulated
in the same order as the figures.

Test GNU C LCC Mite Mite − nops

switch 1,292 2,228 4,800 4,532
wf1 616 1,100 1,820 1,688
14q 384 620 728 616
stan 6,364 12,144 13,352 12,544
fft-1 952 2,076 2,116 2,044
fft-3 952 2,076 1,740 1,672
fft-6 952 2,076 1,724 1,652
fft-7 952 2,076 1,604 1,536
pyram 1,072 1,980 1,584 1,576
pyr-bad 1,072 1,980 2,028 2,020

Table E.1: Native code size/bytes

Test GNU C LCC Mite

switch 2,260 2,844 2,609
wf1 1,472 1,628 1,325
14q 1,168 1,120 576
stan 8,136 13,000 10,626
fft-1 1,844 2,604 1,213
fft-3 1,844 2,604 1,116
fft-6 1,844 2,604 1,119
fft-7 1,844 2,604 1,132
pyram 1,980 2,868 1,116
pyr-bad 1,980 2,868 1,209

Table E.2: Executable file size/bytes

139

E Results of the tests

Test Memory allocated Code + data generated

switch 67,754 5,128
wf1 104,392 33,877
14q 8,356 1,084
stan 336,390 83,191
fft-1 25,383 2,178
fft-3 20,006 1,834
fft-6 20,395 1,786
fft-7 20,207 1,666
pyram 18,882 1,660
pyr-bad 20,062 2,104

Table E.3: Memory consumption/bytes

Test GNU C LCC Mite

switch 0·05 0·05 0·11
wf1 0·06 0·06 0·13
14q 38·21 46·97 62·96
stan 14·60 32·70 33·08
fft-1 2·79 6·57 7·32
fft-3 2·79 6·57 6·53
fft-6 2·79 6·57 2·82
fft-7 2·79 6·57 2·80
pyram 1·01 1·66 0·93
pyr-bad 1·01 1·66 1·72

Table E.4: Execution time/s

140

Test Translation Run

switch 0·021 0·05
wf1 0·037 0·06
14q 0·003 62·92
stan 0·113 32·93
fft-1 0·008 7·28
fft-3 0·010 6·48
fft-6 0·010 2·77
fft-7 0·007 2·75
pyram 0·007 0·84
pyr-bad 0·007 1·63

Table E.5: Translation and running time/s

Test 3 4 5 6 7 8 9 10

switch 0·07 0·07 0·07 0·07 0·06 0·07 0·07 0·07
wf1 0·09 0·09 0·09 0·09 0·09 0·09 0·09 0·09
14q 114·95 97·92 83·64 85·26 58·45 63·11 63·11 63·30
stan 44·46 41·18 37·73 35·16 34·19 33·88 33·68 33·44
fft-1 8·10 8·08 7·77 7·56 7·31 7·30 7·31 7·32
fft-7 3·23 3·02 2·81 2·77 2·77 2·76 2·76 2·75
pyram 1·91 1·69 1·45 1·44 1·44 1·02 0·95 0·93
pyr-bad 1·88 1·85 1·82 1·81 1·79 1·78 1·77 1·72

Table E.6: Effect of number of physical registers on execution time/s

141

E Results of the tests

Test 3 4 5 6 7 8 9 10

switch 5,320 5,044 4,704 4,788 4,792 4,800 4,800 4,800
wf1 2,348 2,180 1,916 1,868 1,840 1,820 1,820 1,820
14q 1,164 1,004 888 840 708 728 728 728
stan 17,100 15,644 15,000 14,188 13,668 13,536 13,472 13,352
fft-1 2,464 2,404 2,252 2,220 2,140 2,112 2,096 2,116
fft-7 2,060 1,900 1,816 1,688 1,656 1,700 1,668 1,604
pyram 2,100 1,968 1,824 1,816 1,804 1,636 1,588 1,584
pyr-bad 2,344 2,308 2,276 2,256 2,084 2,080 2,068 2,028

Table E.7: Effect of number of physical registers on code size/bytes

Test 3 4 5 6 7 8 9 10

switch 68,658 68,126 67,658 67,742 67,746 67,754 67,754 67,754
wf1 105,656 105,136 104,584 104,440 104,412 104,392 104,392 104,392
14q 9,560 9,112 8,804 8,660 8,336 8,356 8,356 8,356
stan 346,340 343,156 341,136 338,948 337,308 336,952 336,664 336,390
fft-1 26,115 26,087 25,647 25,583 25,375 25,315 25,235 25,383
fft-7 21,303 20,887 20,739 20,419 20,355 20,431 20,367 20,207
pyram 20,166 19,842 19,474 19,466 19,454 19,030 18,886 18,882
pyr-bad 20,538 20,470 20,438 20,418 20,150 20,146 20,134 20,062

Table E.8: Effect of number of physical registers on memory allocation/bytes

142

Test 3 4 5 6 7 8 9 10

switch 0·021 0·021 0·021 0·021 0·020 0·020 0·020 0·020
wf1 0·037 0·036 0·036 0·036 0·036 0·036 0·036 0·036
14q 0·004 0·004 0·003 0·003 0·003 0·003 0·003 0·003
stan 0·116 0·114 0·113 0·112 0·111 0·111 0·111 0·110
fft-1 0·009 0·009 0·008 0·008 0·008 0·008 0·008 0·008
fft-7 0·008 0·008 0·007 0·007 0·007 0·007 0·007 0·007
pyram 0·008 0·007 0·007 0·007 0·007 0·007 0·007 0·007
pyr-bad 0·008 0·008 0·008 0·008 0·007 0·007 0·007 0·007

Table E.9: Effect of number of physical registers on translation time/s

143

Bibliography

All the references amassed during my research are reproduced below in the hope that
they form a useful collection. [24] contains an excellent bibliography of earlier work.

[1] Mike Acetta, Robert Baron, David Golub, Richard Rashid, Avadis Tevanian, and
Michael Young. Mach: a new kernel foundation for UNIX development. Techni-
cal report, Carnegie Mellon University, 1986.

[2] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Efficient and language-
independent mobile programs. In Proceedings of the ACM SIGPLAN Symposium
on Programming Language Design and Implementation (PLDI ’96), pages 127–136,
Philadelphia, PA, May 1996. ACM.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1986.

[4] M. Alfonseca, D. Selby, and R. Wilks. The APL IL interpreter generator. IBM
Systems Journal, 30(4):490–497, 1991.

[5] J. Alves-Foss, editor. Formal Syntax and Semantics of Java, volume 1523 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

[6] American National Standards Institute. ANS X3.159-1989: Programming
Languages—C, December 1989.

[7] American National Standards Institute. ANS X3.215-1994: Programming
Languages—Forth, 1994.

[8] American National Standards Institute. ANS X3.4-1986(R1997): Information Sys-
tems: Coded Character Sets—7-Bit American National Standard Code for Information
Interchange, 1997.

[9] Arm Limited. The ARM–THUMB Procedure Call Standard, 1998. http://www.arm.
com/.

[10] John Batali, Edmund Goodhue, Chris Hanson, Howie Shrobe, Richard M. Stall-
man, and Gerald Jay Sussman. The Scheme-81 architecture—system and chip. In
Paul Penfield, Jr., editor, Proceedings of the MIT Conference on Advanced Research in
VLSI, Dedham, Mass., 1982.

144

[11] W. Gurney Benham, editor. Cassell’s Book of Quotations, Proverbs and Household
Words. Cassell, revised edition, 1914.

[12] Manuel E. Benitez and Jack W. Davidson. The advantages of machine-dependent
global optimization. In International Conference on Programming Language and Ar-
chitectures (PLSA ’94), pages 105–123, 1994.

[13] Lennart Benschop. Sod32, 1995. Posted to comp.sources.misc, Volume 46, Issue
7.

[14] Valer Bocan. Delta forth, 1999. http://www.dataman.ro/dforth/.

[15] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software—Practice and Experience, 18(9):807–820, 1988.

[16] Paulo Bonzini. Using and porting GNU lightning, 2000. ftp://alpha.gnu.org/
gnu/.

[17] Barry B. Brey. Programming the 80286, 80386, 80486 and Pentium-based Personal
Computer. Prentice-Hall, 1996.

[18] Leo Brodie. Thinking FORTH. Prentice-Hall, 1984.

[19] Leo Brodie. Starting FORTH. Prentice-Hall, second edition, 1987.

[20] Fred P. Brooks. The Mythical Man-Month. Addison-Wesley, anniversary edition,
1995.

[21] Michael Brown. PASM—portable runtime assembler. http://www.washery.com/
projects/pasm/.

[22] P. J. Brown. Writing Interactive Compilers and Interpreters. Wiley, 1979.

[23] Harold Carr and Robert R. Kessler. An emulator for Utah Common Lisp’s ab-
stract virtual register machine. In Proceedings of the 1987 Rochester Forth Conference,
pages 113–116, Rochester, NY, 1987.

[24] Eddy H. Debaere and Jan M. Van Campenhout. Interpretation and Instruction Path
Coprocessing. MIT Press, 1990.

[25] distributed.net. http://www.distributed.net/.

[26] S. Dorward et al. Inferno. In IEEE Compcon ’97 Proceedings, 1997.

[27] W. Earle. Compress ROM programs with a math-function interpreter. Electronic
Design News, March 31st 1982.

[28] MicroProcessor Engineering. The PRACTICAL virtual machine architecture,
1998.

145

Bibliography

[29] Dawson R. Engler. VCODE: A retargetable, extensible, very fast dynamic code
generation system. In Proceedings of the 23rd Annual ACM Conference on Program-
ming Language Design and Implementation, 1996. http://www.pdos.lcs.mit.edu/
∼engler/.

[30] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: A language
for high-level, efficient, and machine-independent dynamic code generation. In
Proceedings of the 23rd Annual ACM Symposium on Principles of Programming Lan-
guages, 1996.

[31] M. Anton Ertl. A portable Forth engine. In EuroFORTH ’93 conference proceedings,
Mariánské Láznè (Marienbad), 1993.

[32] M. Anton Ertl. Stack caching for interpreters. In EuroForth ’94 Conference proceed-
ings, pages 3–12, Winchester, UK, 1994.

[33] Marc Feeley and James S. Miller. A parallel virtual machine for efficient Scheme
compilation. In Proceedings of the 1990 ACM Conference, pages 119–130, Nice,
France, 1990.

[34] P. J. Fleming and J. J. Wallace. How not to lie with statistics—the correct way to
summarise benchmark results. Communications of the ACM, 29(3):218–221, March
1986.

[35] Free Software Foundation. GCC compiler collection. http://www.gnu.org/
software/gcc/.

[36] Free Software Foundation. GNU C library. http://www.gnu.org/software/libc/.

[37] Michael Franz and Thomas Kistler. Introducing Juice, 1996. http://caesar.ics.uci.
edu/juice/intro.html.

[38] Christopher Fraser and David Hanson. A Retargetable C Compiler: Design and Im-
plementation. Addison-Wesley, 1995.

[39] Richard M. Fujimoto. The virtual time machine. In F. Leighton, editor, Proceedings
of the 1989 ACM Symposium, pages 35–44, Santa Fe, Mexico, 1989.

[40] Jim Galbreath. A high-level language benchmark. BYTE, 6(9):180–198, 1989.

[41] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and
Vaidy Sunderam. Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994.

[42] L. George. MLRISC: Customizable and reusable code generators. Technical re-
port, AT&T Bell Laboratories, Murray Hill, NJ, 1997.

[43] James Gosling and Henry McGilton. The Java language environment: A white
paper, May 1996. http://java.sun.com/.

146

[44] Numerical Algorithms Group. NAG FORTRAN library. http://www.nag.com/.

[45] David R. Hanson. Fast allocation and deallocation of memory based on object
lifetimes. Software—Practice and Experience, 20(1):5–12, 1990.

[46] Steven Hardy. The POPLOG programming system. Technical Report CSRP 003,
University of Sussex, 1982.

[47] J. Hennessy and P. Nye. Stanford Integer Benchmarks. Stanford University. ftp:
//ftp.complang.tuwien.ac.at/pub/forth/.

[48] C. B. Hill, editor. Apophthegms from Hawkins’s edition of Johnson’s works, volume ii
of Johnsonian Miscellanies. 1897.

[49] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–583, 1969.

[50] Rolf Hoffmann. A classification of interpreter systems. Microprocessing and Mi-
croprogramming, 12:3–8, 1983.

[51] Ian Holyer. Functional Programming with Miranda. Pitman, 1991.

[52] Wei-Chung Hsu, Charles N. Fischer, and James R. Goodman. On the minimiza-
tion of loads/stores in local register allocation. IEEE Transactions on Software En-
gineering, 15(10):1252–1260, October 1989.

[53] Institute of Electrical and Electronics Engineers. IEEE 754-1985(R1994): IEEE Stan-
dard for Binary Floating-Point Arithmetic, 1994.

[54] International Organization for Standardization. ISO/IEC 10646-1:1993 Information
technology—Universal Multiple-Octet Coded Character Set (UCS)—Part 1: Architec-
ture and Basic Multilingual Plane, 1993.

[55] International Organization for Standardization. ISO/IEC 9899-1999: Programming
Languages—C, December 1999.

[56] David Jaggar. ARM Architectural Reference Manual. Prentice Hall Europe, 1996.

[57] Chris Jobson and John Richards. BCPL for the BBC Microcomputer, 1983.

[58] Richard Jones and Rafael Lins. Garbage Collection. John Wiley and Sons Ltd, 1996.

[59] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice-Hall, 1992.

[60] Richard Kelsey, William Clinger, Jonathan Rees, et al. Revised5 report on the
algorithmic language Scheme. Higher-Order and Symbolic Computation, 11(1):7–
105, August 1998. http://www.swiss.ai.mit.edu/projects/scheme/.

[61] Paul Klint. Interpretation techniques. Software—Practice and Experience, 11:963–
973, 1981.

147

Bibliography

[62] Andreas Krall. Efficient JavaVM just-in-time compilation. In PACT ’98 proceedings,
1998.

[63] Glenn Krasner, editor. Smalltalk-80: Bits of History, Words of Advice. Addison-
Wesley, 1983.

[64] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308–
320, January 1964.

[65] Mark Leone and Peter Lee. Deferred compilation: The automation of run-time
code generation. Technical Report CMU-CS-93-225, School of Computer Science,
Carnegie Mellon University, December 1993.

[66] Mark Leone and Peter Lee. Lightweight run-time code generation. In Proceedings
of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation, pages 97–106, June 1994.

[67] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, second edition, 1999.

[68] R. G. Loeliger. Threaded Interpretive Languages: Their Design and Implementation.
BYTE Books, Peterborough, NH, 1981.

[69] 180 Software Ltd. ORIGIN white paper, 2000. http://www.180sw.com/.

[70] S. Lucco, O. Sharp, and R. Wahbe. Omniware: A universal substrate for
mobile code. In Proceedings of Fourth International World Wide Web Confer-
ence, Massachusetts Institute of Technology, 1995. http://www.w3.org/pub/
Conferences/WWW4/Papers/165/.

[71] Steven Lucco. Split-stream dictionary program compression. In Proceedings of the
ACM SIGPLAN ’00 conference on Programming language design and implementation,
pages 27–34, 2000.

[72] Dis virtual machine specification. In Inferno User’s Guide, chapter 7. Lucent Tech-
nologies, 1997.

[73] Wayne Luk, David Ferguson, and Ian Page. Structured hardware compilation of
parallel programs. In W. Moore and W. Luk, editors, More FPGAs, pages 213–224.
Abingdon EE&CS Books, 1994.

[74] Wayne Luk and Ian Page. Parameterising designs for FPGAs. In W. R. Moore
and W. Luk, editors, FPGAs, chapter 5.4. Abingdon EE&CS Books, 1991.

[75] Mark Lutz. Programming Python. O’Reilly & Associates, October 1996.

[76] J. McCarthy. LISP programmers’ manual. MIT Computation Center, Cambridge,
MA, 1960.

148

[77] .NET framework SDK technology preview. http://msdn.microsoft.com/
downloads/.

[78] Robin Milner. The polyadic π-calculus: A tutorial. In F. L. Bauer, W. Brauer,
and H. Schwichtenberg, editors, Logic and Algebra of Specification, pages 203–246.
Springer Verlag, 1993.

[79] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press, Cam-
bridge, MA, 1991.

[80] Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML. MIT
Press, Cambridge, MA, 1990.

[81] Charles Moore and Jeff Fox. Preliminary specification of the F21, 1998. http:
//www.ultratechnology.com/f21data.pdf.

[82] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Fred-
erick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A
realistic typed assembly language. In 1999 ACM SIGPLAN Workshop on Compiler
Support for System Software, pages 25–35, Atlanta, GA, USA, May 1999.

[83] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
typed assembly language. ACM Transactions on Programming Languages and Sys-
tems, 21(3):527–568, May 1999.

[84] George Necula. Compiling with proofs. Technical Report CMU-CS-98-154,
School of Computer Science, Carnegie Mellon University, September 1998.

[85] K. V. Nori, U. Ammann, H. H. Nabeli, and Ch. Jacobi. Pascal P implementation
notes. In D. W. Barron, editor, Pascal—The Language and its Implementation, pages
125–170. Wiley, 1981.

[86] Markus F. X. J. Oberhumer. LZO data compression library, 1999. http://wildsau.
idv.uni-linz.ac.at/mfx/lzo.html.

[87] The Open Group. Architecture Neutral Distribution Format (XANDF) Specification,
January 1996. Preliminary Specification P527.

[88] Ian Page and Wayne Luk. Compiling occam into FPGAs. In W. R. Moore and
W. Luk, editors, FPGAs, chapter 5.3. Abingdon EE&CS Books, 1991.

[89] Nic Peeling. ANDF—some information, November 18th 1993. comp.compilers.

[90] S. Pemberton and M. C. Daniels. Pascal implementation: the P4 compiler. John Wiley
& Sons, 1982.

[91] Simon Peyton Jones, Thomas Nordia, and Dino Oliva. C--: A portable assem-
bly language. In Proceedings of the 1997 Workshop on Implementing Functional Lan-
guages, 1997.

149

Bibliography

[92] Simon Peyton Jones and Norman Ramsey. The C-- run-time interface for concur-
rency, 2000. http://www.cminusminus.org/abstracts/c--concurrency.html.

[93] Simon Peyton Jones, Norman Ramsey, and Fermin Reig. C--: a portable assembly
language that supports garbage collection. In Proceedings of PPDP ’99, 1999.

[94] Haskell 98: A non-strict, purely functional language, 1999. http://www.haskell.
org/definition/.

[95] Benjamin C. Pierce. The pict programming language, 1995. http://www.cis.
upenn.edu/∼bcpierce/.

[96] Matt Pietrek. A crash course on the depths of Win32 structured exception han-
dling, 1997. http://www.microsoft.com/msj/0197/exception/exception.htm.

[97] Rob Pike. Private communication, 1997. Lucent Technologies.

[98] Thomas Pittman. Two-level hybrid interpreter/native code execution for com-
bined space-time program efficiency. In Symposium on Interpreters and Interpretive
Techniques (SIGPLAN ’87), pages 150–152, 1987.

[99] Massimiliano Poletto, Dawson R. Engler, and M. Frans Kaashoek. tcc: A sys-
tem for fast, flexible and high-level dynamic code generation. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion ’97, 1997.

[100] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM
Transactions on Programming Languages and Systems, 21(5):895–913, September
1999.

[101] Robin Popplestone. Specifying types by grammars: A polymorphic static type
checker operating at a stack machine level. Technical Report FP-94-01, University
of Glasgow, 1994.

[102] Robin Popplestone. A typed operational semantics based on grammatical charac-
terisation of an abstract machine. Technical Report FP-94-02, University of Glas-
gow, 1994.

[103] Norman Ramsey and Simon Peyton Jones. A single intermediate language that
supports multiple implementations of exceptions. In Proceedings of PLDI ’00, 2000.

[104] Martin Richards. Intcode: an interpretive machine code for BCPL. Technical
report, University of Cambridge Computer Laboratory, December 1972. Revised
August 1975.

[105] Martin Richards. Cintcode distribution, 2000. http://www.cl.cam.ac.uk/∼mr/
BCPL.html.

150

[106] Martin Richards and Colin Whitby-Strevens. BCPL—the language and its compiler.
Cambridge University Press, 1979.

[107] Daniel Ridge, Donald Becker, Phillip Merkey, and Thomas Sterling. Beowulf:
Harnessing the power of parallelism in a pile-of-PCs. In Proceedings of IEEE
Aerospace, 1997.

[108] Theodore H. Romer, Geoffrey M. Voelker, Alec Wolman, Wayne A. Wong, Jean-
Loup Baer, Brian N. Bershad, and Henry M. Levy. The structure and performance
of interpreters. In Proceedings of ASPLOS VII, pages 150–159, University of Wash-
ington, Seattle.

[109] A. W. Roscoe and C. A. R. Hoare. The laws of occam programming. Technical
monograph PRG-53, University of Oxford Computer Laboratory, 1986.

[110] Mark Roulo. Misty Beach Forth: An implementation in Java. Forth Dimensions,
XIX(4), November–December 1997.

[111] David W. Sandberg. Experience with an object-oriented virtual machine.
Software—Practice and Experience, 18(5):415–425, 1988.

[112] Richard L. Sites. Alpha architecture reference manual. Digital Equipment Corpora-
tion, 1992.

[113] Robert Smith, Aaron Sloman, and John Gibson. Poplog’s two-level virtual ma-
chine support for interactive languages. Technical Report CSRP 153, University
of Sussex, 1990.

[114] Robert M. Smith. A high performance version of the POPLOG virtual machine.
Technical Report CSRP 117, University of Sussex, 1988.

[115] Stuart Smith. Private communication, 1998. Essex University.

[116] T. B. Steel, Jr. UNCOL. Ann. Rev. Auto. Prog., 2:325–344, 1960.

[117] Tao Systems. Elate, 1999. http://www.tao.co.uk/.

[118] MLj team. The MLj compiler, 1999. http://www.dcs.ed.ac.uk/∼mlj/.

[119] Tendra home page, 1998. http://alph.dra.hmg.gb/TenDRA/.

[120] Reuben Thomas. Beetle and pForth: a Forth virtual machine and compiler. BA
dissertation, University of Cambridge, 1995. http://sc3d.org/rrt/.

[121] Reuben Thomas. The melting machine: from PC to pronit, 1995. http://sc3d.
org/rrt/.

[122] Reuben Thomas. Mite: a fast and flexible virtual machine. In EuroForth ’98 con-
ference proceedings, September 1998. http://sc3d.org/rrt/.

151

Bibliography

[123] Reuben Thomas. Machine Forth for the ARM processor. In EuroForth ’99 confer-
ence proceedings, 1999. http://sc3d.org/rrt/.

[124] Reuben Thomas. The TpForth project. In EuroForth ’99 conference proceedings,
1999. http://sc3d.org/rrt/.

[125] Reuben Thomas. Mite: a basis for ubiquitous virtual machines. PhD thesis, Univer-
sity of Cambridge Computer Laboratory, November 2000. http://sc3d.org/rrt/.

[126] Reuben Thomas. The Mite VM: bridging the complexity gulf. In EuroForth ’01
conference proceedings, November 2001. http://sc3d.org/rrt/.

[127] Reuben Thomas. The beetle forth virtual machine, 2011. http://sc3d.org/rrt/.

[128] Reuben Thomas. An implementation of the beetle virtual machine for posix, 2011.
http://sc3d.org/rrt/.

[129] Reuben Thomas. A simple user-interface for the beetle forth virtual machine,
2011. http://sc3d.org/rrt/.

[130] Tools Interface Standards Committee. Executable and Linkable Format (ELF). http:
//developer.intel.com/vtune/tis.htm.

[131] Omri Traub, Glenn Holloway, and Michael D. Smith. Quality and speed in linear-
scan register allocation. In Proceedings of the ACM SIGPLAN ’98 conference on Pro-
gramming language design and implementation, pages 142–151, 1998.

[132] David A. Turner. A new implementation technique for applicative languages.
Software—Practice and Experience, 9:31–49, 1979.

[133] David A. Turner. Recursion equations as a programming language, pages 1–28. Cam-
bridge University Press, January 1981.

[134] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.
O’Reilly & Associates, second edition, September 1996.

[135] Bruce E. Wampler. The V reference manual, 1999. ftp://objectcentral.com/vref.
pdf.

[136] D. H. D. Warren. An abstract Prolog instruction set. Technical Note 300, SRI
International, 1983.

[137] David L. Weaver and Tom Gamond, editors. The SPARC Architecture Manual.
Prentice-Hall, 1994.

[138] Reinhold P. Weicker. Dhrystone benchmark: Rationale for version 2 and measure-
ment rules. SIGPLAN Notices, 23(8):49–62, August 1988.

[139] Daniel Weinreb and David Moon. LISP Machine Manual. Massachusetts Institute
of Technology, 1979.

152

[140] Steve Williams. 68030 Assembly Language Reference. Addison-Wesley, 1989.

[141] Phil Winterbottom and Rob Pike. The design of the Inferno virtual machine, 1997.
Lucent Technologies.

[142] N. Wirth and M. Reiser. Programming in Oberon—Steps Beyond Pascal and Modula.
Addison-Wesley, 1992.

[143] John Zukowski. Java AWT Reference. Java Series. O’Reilly & Associates, 1997.

153

Colophon

What is written without effort is in general read without pleasure
Johnson [48]

The thesis was prepared using NEdit on a Daewoo Chorus laptop running GNU/
Linux, Zap on an Acorn RISC PC running RISC OS, and Symbian’s Text Editor on a
Psion Revo running EPOC. It was typeset with LATEX, using BibTEX to prepare the bib-
liography. The KOMA-SCRIPT report document style was used. The main text was set
in Palatino, with Helvetica used for headings and Computer Modern Typewriter as the
typewriter face. Acorn’s Draw was used to prepare the figures (with the exception of
figure 2.1, which was drawn with pstricks in LATEX), and the graphs were generated from
the original data by PipeDream.

Several LATEX packages were used to improve the design, notably booktabs and dcol-

umn to improve the tables, and lips to give better text ellipses. mathpple was used to
provide the typefaces, in a version kindly modified by its author to omit the kerning
pair for ones which prevented columns of digits from lining up. Custom packages were
written to typeset the code examples, the semantic and syntactic definitions, and the
data structure diagrams.

Proofs were printed on a Brother HL-760 and a Hewlett-Packard LaserJet 5Si laser
printer; the final copy was printed by the Hewlett-Packard on 80gsm Officeteam A4
laser copier paper, and bound by J. S. Wilson of Cambridge.

154

