
The End of Innocents

Strategies for a 21st Century Pied Piper

or, Why Kids Think Computers Aren’t Cool Any More, And How To

Cope

Reuben Thomas

11th–12th March 2006; revised 20th March 2006, 13th May
2008

A Unique Privilege and A Common Predicament

We (by “we”, I mean members of my generation, that commonly denoted “X”)
lived through a magic time. In 1975 the first computer marketed at individuals
was launched in kit form; by 2000 most middle-class homes had at least one PC,
and many users spent longer using the internet each day than they did watching
television. In between was a time when computers were simple enough to be
understood from top to bottom: one could buy a machine, or even build it from
components, then learn to program it, and achieve results comparable with
commercial software for the same machine.
Yet, only a few years later, children are growing up taking for granted hugely

powerful and complex computers that they use for diverse entertainment and
social purposes, but rarely show any interest in taking the lid off. (It is note-
worthy that whereas in the 70s one had to assemble a computer before one
can program it, one now has, virtually at least, to disassemble it.) Why does
this matter? One could argue that programming is simply becoming like the
majority of adult disciplines, one to which adults, not children, are attracted
(and one to which young adults will flock readily enough when they realise the
impracticality of becoming a racing driver or fireman). Kids don’t love maths or
law either, but we still get our mathematicians and lawyers. If only this were so,
but I chose my sample adult disciplines carefully: mathematics and law are dif-
ferent. We do in fact have a shortage of mathematicians, and it’s getting worse.
We also already have a shortage of programmers (in fact, there has never been
a superabundance), and it too will only increase.
What’s special about programming? Programming is a mathematically-based

discipline: it requires the ability to reason formally, that is, to use systems of

1

© Reuben Thomas 2006 (rrt@sc3d.org)

axioms and rules of inference to prove conclusions. Most disciplines have some
element of formal reasoning, often called “logic”, but do not utterly rely on it.
It’s also worth noting that “formal reasoning”, or “mathematics” for short, has
little to do with numbers (perusal of an elementary number theory text will
convince doubters), although it is an ability whose lack should be bemoaned as
much as deficiency in numeracy and literacy are. Formal reasoning skills, like
numeracy and literacy, are best learned young, as adults find them much harder
to learn than children.

Seeing how hard it is to excite children about maths and science, why should
computing be any different? Before getting too depressed, let’s examine what
happened in the “magic time”.

The Magic of Childhood

Why is childhood special? It is the child’s limitations that make the world
a magical place: their limited understanding and power simultaneously fills
the world with arbitrary terrors (or in the managed modern world, tedium)
and fanciful delights. (Note how once again ontogeny recapitulates phylogeny.)
Similarly, it was primarily the limitations of computers, in their own childhood,
that made them magical, particularly to children, who perhaps subconsciously
related to their immaturity. But first, let us quickly consider the advantages of
computers circa 1985 as objects of interest for budding programmers. “Home
computers”, as they were often called, had two key advantages for budding
programmers: they switched on instantly, like all the best toys, and they had a
built-in programming language, usually a dialect of BASIC. These two features
meant that you could start writing a program in seconds, with an ease often
mourned today by those old enough to remember. The other attributes of home
computers which encouraged programming were mostly negative. (This should
not be surprising: “necessity is the mother of invention” is just a special form of
the more general observation that creativity is often proportional to the degree
of restriction under which it operates.) The most important were:

BASIC is all you got Commercial games were often not much better than what
you could write yourself. (Children were of course mostly interested in
writing games!)

Computers were simple Simple enough to be understood top to bottom. Chil-
dren enjoy the feeling of mastery this gives, and the more ambitious learnt
how to delve into the machine’s internals.

Computers were small Small enough that a good game could still be short
enough to type in by hand and learn from by example. Even commer-
cial software usually had a single author; many programmers were still
teenagers when they started earning money from programming.

Computers were slow Slow enough that one needed to understand the ma-
chine thoroughly to obtain speed or special effects which are now part

2

© Reuben Thomas 2006 (rrt@sc3d.org)

and parcel of the complex hardware and vast programming libraries that
programmers command.

Computers were isolated Perhaps most importantly, home computers were mostly
not networked. Communication and computation may be theoretically
equivalent, but given the choice between browsing the web and writing a
program, most people will choose the former. Communications channels
focus attention on the message even when that includes the medium; the
mechanism is generally ignored.

Generation X literally grew up with computers. We don’t necessarily under-
stand them better than those who came after (or before) us, but we have a
unique and unreproducible perspective, as brief as that of the pioneers and
perhaps as important. (Let’s hope we get some good memoirs from this gener-
ation.)
Given that this special time is over, what can we really do to fire the imagi-

nation of the next generation of programmers, other than the tried-and-tested
tricks of the other formalists, namely, getting children to play games on our
terms, and sneaking formal thinking into everyday contexts? In fact, we do
have one spark of magic left: while most formal subjects have a purely platonic
existence, computers are a physical embodiment of programming; not only that,
but they are reactive. Our programs have a life of their own, and that is still
attractive to children. We’ll now look at some concrete methods to put this into
practice.

Harnessing The Remnant Spark

We’ll now examine several ways to get children interested in programming, and
look at some bad as well as good ideas, to try to give a rounded overview of
the field.

We Don’t Heed No Education

Educational software can (and should) be disposed of quickly. At best, it’s the
näıve result of a misguided belief that the only thing wrong with Kennedy’s
Latin Primer is that it’s not animated and fluffy enough; more often it’s lazy
hypocrisy typical of initiates that what was good enough for them is good
enough for the next round of novices (but if it’s on a computer it’s modern,
right?). At its worst it’s one of the more dangerous manifestations of the techno-
idiocy that seems to think that humans can be replaced by machines. When
children don’t see through it and switch off immediately, they end up feeling
duped and risk losing respect for education.

There’s No Turning Back The Clock

Some people think that if only we had computers that behave as they did in
the 1980s, children would still be excited by them. Sadly, it wouldn’t work.
The childhood of computers I described above was preceded by the childhood

3

© Reuben Thomas 2006 (rrt@sc3d.org)

of electronics, which similarly captured a generation through electronic kits.
However, by the 1980s building your own radio simply wasn’t exciting to most
children, who probably owned at least one themselves, and with whose func-
tionality, size and stylishness kits could never hope to compete. Fortunately, it
turned out that society simply didn’t need that many electronic engineers. (It’s
worth noting that outside the context of this article, namely, the developed
world, building simpler, smaller, cheaper computers might well be a winning
strategy, and not just for children. Nicholas Negroponte’s technically ingenious
but politically fatally flawed eMachine initiative to build sub-$100 PCs for the
developing world is arguably woefully under-ambitious: why not a sub-$10 com-
puter? As so often, by trying to build the simplest thing possible, we might come
up with something simple and reliable enough for the real world.)

We Must Speak Their Language

The modest success of Logo illustrates what I believe is the most promising
approach: engage children with specially tailored programming languages and
environments. However, recently examples of this have focused on the wrong
thing: trying to keep children’s attention, they have, like educational software,
concentrated on eye (and ear) candy. This just makes them look incompetent
next to good commercial games, and in any case, as good games writers know,
what really matters is the gameplay. Also, systems like Alice and KPL make the
same mistake as Logo of letting children know that they are designed especially
for them. By the time children are mature enough to learn to program, they
think they want to be treated like adults.
What should a programming environment for kids be like? Logo points the

way: it should be based on a formally sound language, and it should be strongly
connected to the real world. The closest thing in existence is Carl Sassenrath’s
REBOL, which has many excellent features:

Simple and uniform It is based on LISP, but a more functional notation with
a smattering of infix operators avoids the uncontrolled proliferation of
parentheses. In short, it retains the wonderful purity, elasticity and “code
is data” magic without being physically painful to look at.

Small and ubiquitous It runs on all common PC operating systems, and con-
sists, in common incarnations, of a single smallish binary.

Real-world datatypes REBOL understands quantities like currencies, colours,
IP addresses and dates.

Strong connections to the real world Similarly, REBOL comes with simple
programming interfaces for many internet protocols, including HTTP and
SMTP, and a fully-featured GUI system, all in the small standard distri-
bution package. Most current areas of interest can be explored in a few
lines of code, even more easily than in BASIC of yore (more like the
souped-up late-80s and early 90s dialects STOS and AMOS, themselves
hugely popular, though rather late in the day, and once again aimed at
creating games, that is to say, fun programming).

4

© Reuben Thomas 2006 (rrt@sc3d.org)

REBOL is a good start, but there are a few other facilities that would help
to grab a child’s attention:

Internet integration REBOL’s internet support is rather low-level; it has not
yet caught up with the recent explosion of web services, in particular as
defined by Google. It should be possible to easily fetch data such as ex-
change rates, atomic weights, cometary orbits and parrot plumage and
use them in programs, or to use pictures from Flickr for feature recogni-
tion, maps from Google Maps for population simulation, or one’s email
account on Yahoo for textual analysis. The calculation language Frink
has the beginnings of this sort of understanding. REBOL runs in parallel
with the web; these days it’s hard to imagine how something that can’t
actually run in a browser could be a real winner (although being able to
run separately too would be a great bonus).

Simulation It should be much easier to build large-scale simulations: a flock
of birds, a planetary system, a molecular assembly, a barter economy. As
well as general facilities for discrete and continuous simulations, a wide
range of physical laws and other governing equations should be built in,
along with an understanding of units (like Frink’s).

Ubiquity The programming environment should follow the child around, from
desktop to phone to laptop, from home to school. Technologically a solved
problem, it still needs to be made practical and usable. It should be at
least as portable as a favourite doll.

Socialisation Recent popular computing technologies have all become popular
because they support socialisation. A programming language that a child
could use side-by-side with other activities would be much more likely to
be used.

Integration A corollary of the previous two characteristics is that the program-
ming environment should not be a separate thing, but integrated with all
the software a child uses, so that it is never far from their attention.

In summary, I think that the best way to hook children is to give them an
attractive and ubiquitous programming tool. The importance of teaching it to
them is easy to overstate: children do much of their learning on their own or
from each other, and this has historically been true of programming in partic-
ular. However, precisely because children are increasingly using computers to
communicate with each other and find out about the world, computing envi-
ronments have become an important factor in the socialisation of children. In a
way they are even more important than, for example, the school environment,
since they will live much of their lives in cyberspace. Thus, before concluding,
I’d like to adopt a slightly more fanciful stance and explore ways and senses
in which we might set computers up to educate and socialise children more
generally.

5

© Reuben Thomas 2006 (rrt@sc3d.org)

Hacking Barbarians

Children, as Roald Dahl observed when writing on rail safety, are ignoble sav-
ages. Like most savages, they do not like authority, and they are not stupid.
Sadly, they often end up resigned to authority and acting stupid, or worse. One
of the things children like best about computers is precisely that they can be
tools for working around authority, and one of the things that society needs
most is adults who, while they respect authority, are competent and passionate
subversives. We should be thinking about ways in which kids can (surrepti-
tiously if necessary) be encouraged to do social hacking. Such encouragement
probably needs to be hidden from the kids themselves, and from their teachers
and parents; the best way to do this is to ensure that everyone is trying to do
it. Guerrilla education is perhaps the best general substitute for that rarest of
gems, the loved and respected guru, whom few can hope to have. (Why is so
little written on this subject?)

Enlightenment: We Are Doomed

Despite our little remaining magic, we in computing are as doomed as the
mathematicians and scientists; all we can hope to do is parlay the percentages
into a slight edge; in any case, it’s not in our long-term interest to beat the other
formalists, as we’re all in this together. To be learnt properly, computing needs
to be learnt young, so we must strive to implant the seed of formal thought in as
many young minds as we can reach. It’s a worthy enterprise: intelligent society
depends on it (and not, as is often erroneously implied, merely technological
society, though those who despise the latter often fail to understand the former).
But, without giving up hope of one day finding a simple solution, teaching
children the love of formal thought is in the NP-complete category of educative
problems, because it means getting them to believe that creativity is better
than consumption, and those who do so have attained enlightenment.

Acknowlegements

Eben Upton, as Director of Studies in computer science at St John’s College,
Cambridge, brought to my attention the fall in applicants to Cambridge and
in particular his difficulty in finding good candidates to read computer science.
Julian Midgley commented on the first version.

Lacunæ and further reading

Eben Upton believes (private communication, March 2006) that bribery will
work; his give-away TV-compatible ABC computer is based on this premise.
I believe this will only be successful if it makes smart kids who would have
directed their energies elsewhere reconsider.

The Little Coder’s Predicament by why (https://github.com/hacketyhack/
hacketyhack/wiki/The-Little-Coder%27s-Predicament), a similar, earlier

6

© Reuben Thomas 2006 (rrt@sc3d.org)

essay to which I was directed in July 2006, endorses my language-centric ap-
proach.

Why Johnny Can’t Code by David Brin (http://www.salon.com/tech/feature/
2006/09/14/basic/), who notes the problem, but has the misguided idea that
it’s important to learn BASIC in order to understand the “deeper patterns”
underlying programming (yes, programmers should understand how computers
work, but that’s not the big problem, nor is one of the worst languages ever
designed a solution). The article has inspired KidBASIC (http://kidbasic.
sourceforge.net/).

James MacKenzie (private communication, January 2008) suggests that I’ve
overlooked the importance of being able to program hardware directly, as one
could, say, from BBC BASIC (with peeking and poking), but can’t from the
standard installations of most of the first languages one is likely to use today.
That may be true; I didn’t think of it because I didn’t play with hardware on mi-
crocomputers when I was learning to program. It seems reasonable to imagine,
though, that many or even most children would be more excited by playing with
real gadgetry than merely making pretty pictures on their screen. I’m not sure
however that even gadgets are as exciting as dealing with the big wide world
via the internet; the Polish boy who derailed his local tram system would seem
to agree (http://www.theregister.co.uk/2008/01/11/tram_hack/), though
he is a bad example of another benefit of introducing programming via the in-
ternet, which is that it leads naturally via communication with people and
real-world data sets to consideration of the wider world and adult involvement
in it, in a way that programming video games doesn’t.
Bill Thompson outlines the problem after a history lesson in Who will write

tomorrow’s code? (http://news.bbc.co.uk/1/hi/technology/7324556.stm).

7

